Introduction to p-adic Integers

Molly Bradley

University of Pennsylvania Directed Reading Program

May 2, 2024

Modular Arithmetic

Ν. Л

1.1

0

Surjective Map			
$\mathbb{Z} o \mathbb{Z}/p^n, z \mapsto z \mod p^n.$			
Example			
	$\mathbb{Z} o \mathbb{Z}/5$	$156\mapsto 1$	
	$\mathbb{Z} ightarrow \mathbb{Z}/25$	$156\mapsto 6$	
	$\mathbb{Z} ightarrow \mathbb{Z}/125$	$156\mapsto 31$	
	$\mathbb{Z} ightarrow \mathbb{Z}/625$	$156\mapsto 156$	

p-adic Integers

Another Surjective Map

There is also a natural surjective map from any \mathbb{Z}/p^n to \mathbb{Z}/p^{n-1} .

Sequence of Projections

$$...
ightarrow \mathbb{Z}/p^4
ightarrow \mathbb{Z}/p^3
ightarrow \mathbb{Z}/p^2
ightarrow \mathbb{Z}/p$$

Example

$$... \rightarrow \mathbb{Z}/625 \rightarrow \mathbb{Z}/125 \rightarrow \mathbb{Z}/25 \rightarrow \mathbb{Z}/5$$

Definition

We define the p-adic integers to be the *inverse limit* of this system, and write $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n = \{(\dots b_3, b_2, b_1) \in \prod_{n=1}^{\infty} \mathbb{Z}/p^n \mid b_{i+1} \mapsto b_i \forall i \in \mathbb{N}\}$

$\mathsf{Integers} \to \mathsf{p}\mathsf{-}\mathsf{adic}\ \mathsf{Integers}$

Surjective Map

We use the surjective maps $\mathbb{Z} \to \mathbb{Z}/p^n$ to write any integer as a p-adic integer.

Example

$$egin{aligned} 156 \mapsto (...156, 156, 156, 31, 6, 1) \ & 5 \mapsto (...5, 5, 5, 5, 5, 0) \ & -1 \mapsto (...3124, 624, 124, 24, 4) \end{aligned}$$

Question

Are there elements of \mathbb{Z}_p that aren't integers?

(...3906, 781, 156, 31, 6, 1)

Solving Equations

Example

We consider the equation $x^2 + 1 = 0$.

$$(x^2+1=0)\in\mathbb{Z}/5\implies \mathbf{b_1}=\mathbf{2}\implies b_2=2+5x$$

$$((2+5x)^2+1=0) \in \mathbb{Z}/25 \implies 4+20x+25x^2+1=0 \implies 5+20x=0$$
$$\implies 5(1+4x)=0 \implies x=1 \implies \mathbf{b_2}=\mathbf{7}$$
$$(...\mathbf{7},\mathbf{2}) \cdot (...\mathbf{7},\mathbf{2}) + \mathbf{1} = (....,\mathbf{0},\mathbf{0})$$

May 2, 2024

Solving More Equations

Question

Will this continuous computation process always give us a valid solution?

Hensel's Lemma

Given f(x), if there exists r such that $f(r) = 0 \mod p^k$ and $f'(r) \neq 0 \mod p$, then for any $m \leq k$, there exists s such that $f(s) = 0 \mod p^{k+m}$, and $s = r \mod p^k$.

Analytic Perspective on the p-adic Integers

Localization of \mathbb{Z} at (p)

$$\mathbb{Z}_{(p)} = \left\{ \frac{n}{d} \mid n, d \in \mathbb{Z}, d \nmid p \right\}$$

p-adic Norm

$$||x - y|| = \left(\frac{1}{p}\right)^{v(x-y)}$$

We define v(x - y) by decomposing $x - y = p^a \cdot \frac{m}{d}$ with m, d coprime to p and setting v(x - y) = a.

Analytic Completion

We can equivalently define \mathbb{Z}_p as the completion of $\mathbb{Z}_{(p)}$ with regards to the p-adic norm.

Applications of p-adic Integers

Hasse-Minkowski Theorem

- Indamental result in Number Theory.
- States that a quadratic form has a solution over Q iff it has a solution over Q_p for all primes p and over ℝ.
- This is very helpful! Tools like Hensel's lemma allow us to find solutions more easily in these fields.

Acknowledgements

Thank you so much to my mentor, Deependra Singh!

Sources: A Course in Arithmetic, Jean-Pierre Serre.