Introduction to p-adic Integers

Molly Bradley

University of Pennsylvania Directed Reading Program
May 2, 2024

Modular Arithmetic

Surjective Map

$$
\mathbb{Z} \rightarrow \mathbb{Z} / p^{n}, z \mapsto z \bmod p^{n}
$$

Example

$$
\begin{array}{rlr}
\mathbb{Z} \rightarrow \mathbb{Z} / 5 & 156 \mapsto 1 \\
\mathbb{Z} \rightarrow \mathbb{Z} / 25 & 156 \mapsto 6 \\
\mathbb{Z} \rightarrow \mathbb{Z} / 125 & 156 \mapsto 31 \\
\mathbb{Z} \rightarrow \mathbb{Z} / 625 & 156 \mapsto 156
\end{array}
$$

p-adic Integers

Another Surjective Map

There is also a natural surjective map from any \mathbb{Z} / p^{n} to \mathbb{Z} / p^{n-1}.
Sequence of Projections

$$
\ldots \rightarrow \mathbb{Z} / p^{4} \rightarrow \mathbb{Z} / p^{3} \rightarrow \mathbb{Z} / p^{2} \rightarrow \mathbb{Z} / p
$$

Example

$$
\ldots \rightarrow \mathbb{Z} / 625 \rightarrow \mathbb{Z} / 125 \rightarrow \mathbb{Z} / 25 \rightarrow \mathbb{Z} / 5
$$

Definition

We define the p -adic integers to be the inverse limit of this system, and write $\mathbb{Z}_{p}=\lim _{\leftrightarrows}^{Z} / p^{n}=\left\{\left(\ldots b_{3}, b_{2}, b_{1}\right) \in \prod_{n=1}^{\infty} \mathbb{Z} / p^{n} \mid b_{i+1} \mapsto b_{i} \forall i \in \mathbb{N}\right\}$

Integers \rightarrow p-adic Integers

Surjective Map

We use the surjective maps $\mathbb{Z} \rightarrow \mathbb{Z} / p^{n}$ to write any integer as a p -adic integer.

Example

$$
\begin{aligned}
156 & \mapsto \\
& (\ldots 156,156,156,31,6,1) \\
5 & \mapsto(\ldots 5,5,5,5,5,0) \\
-1 & \mapsto(\ldots 3124,624,124,24,4)
\end{aligned}
$$

Question
Are there elements of \mathbb{Z}_{p} that aren't integers?

$$
(\ldots 3906,781,156,31,6,1)
$$

Solving Equations

Example

We consider the equation $x^{2}+1=0$.

$$
\left(x^{2}+1=0\right) \in \mathbb{Z} / 5 \Longrightarrow \mathbf{b}_{\mathbf{1}}=\mathbf{2} \Longrightarrow b_{2}=2+5 x
$$

$$
\begin{gathered}
\left((2+5 x)^{2}+1=0\right) \in \mathbb{Z} / 25 \Longrightarrow 4+20 x+25 x^{2}+1=0 \Longrightarrow 5+20 x=0 \\
\Longrightarrow 5(1+4 x)=0 \Longrightarrow x=1 \Longrightarrow \mathbf{b}_{\mathbf{2}}=\mathbf{7}
\end{gathered}
$$

$$
(\ldots 7,2) \cdot(\ldots 7,2)+1=(\ldots, 0,0)
$$

Solving More Equations

Question

Will this continuous computation process always give us a valid solution?

Hensel's Lemma

Given $f(x)$, if there exists r such that $f(r)=0 \bmod p^{k}$ and $f^{\prime}(r) \neq 0$ $\bmod p$, then for any $m \leq k$, there exists s such that $f(s)=0 \bmod p^{k+m}$, and $s=r \bmod p^{k}$.

Analytic Perspective on the p-adic Integers

Localization of \mathbb{Z} at (p)

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{n}{d} \right\rvert\, n, d \in \mathbb{Z}, d \nmid p\right\}
$$

p-adic Norm

$$
\|x-y\|=\left(\frac{1}{p}\right)^{v(x-y)}
$$

We define $v(x-y)$ by decomposing $x-y=p^{a} \cdot \frac{m}{d}$ with m, d coprime to p and setting $v(x-y)=a$.

Analytic Completion

We can equivalently define \mathbb{Z}_{p} as the completion of $\mathbb{Z}_{(p)}$ with regards to the p -adic norm.

Applications of p-adic Integers

Hasse-Minkowski Theorem

(1) Fundamental result in Number Theory.
(2) States that a quadratic form has a solution over \mathbb{Q} iff it has a solution over \mathbb{Q}_{p} for all primes p and over \mathbb{R}.
(3) This is very helpful! Tools like Hensel's lemma allow us to find solutions more easily in these fields.

Acknowledgements

Thank you so much to my mentor, Deependra Singh!
Sources: A Course in Arithmetic, Jean-Pierre Serre.

