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Introduction

This talk is about the field of domain theory and its applications in
the theory of programming languages

Domain theory: Studies partially ordered sets equipped with
additional structure giving rise to formal notions of continuity and
approximation - closely related to topology
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Motivation

Why domain theory?

• In PL theory we are interested in denotational semantics of
programming languages

• Denotational semantics: maps syntactic terms to
mathematical objects - essentially a model theory of
programming languages

• Models computation in a natural way and thus provides a
semantics for the λ-calculus
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Outline

This talk will proceed in the following parts
• Background

• The Untyped λ-Calculus
• Order Theory
• Basic Category Theory

• Fixed Points and the Category of ω-Complete Partial Orders

• Least Fixed Points for Denotational Semantics
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The Untyped λ-Calculus

The λ-calculus is a formal system to denote function application
and abstraction developed by Alonzo Church in the 1930s

Gives rise to theory of functions as rules of computation rather
than as sets of ordered pairs

Forms a minimal Turing-complete programming language, ie. any
computable function (algorithm) can be expressed as a λ-term
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The λ-Calculus

The syntax of the lambda calculus is defined inductively as follows

Definition (Syntax)

t := c | x | t1t2 | λx .t1

Where:

• c ranges over a set of constants C and v a set of variables V

• t1t2 represents functional application of the left term to the
right term

• λx .t1 abstracts the variable x on the term t1

Need to define a way to evaluate λ-terms to have notion of
computation. Most important rule is β-reduction:

(β) (λx .M)N ≡ M[N/x ]
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The Y -Combinator

Consider the lambda term λf .(λv .f (vv))(λv .f (vv)) (don’t worry
about parsing this). We denote this as simply Y .
It turns out this term is a fixed point combinator, that is:

Theorem

For any term f , f (Yf ) = Yf

This property allows us to define recursive functions, a crucial
property of any programming language
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Order Theory

Order theory studies sets equipped with ordering on their elements

Definition (Partially Ordered Set)

(P,⪯) is a partially ordered set (poset) iff P is a set and ⪯ is a
reflexive, transitive, and antisymmetric binary relation over P.
Example - (N,≤)

We will usually just write (P,⪯) as P

Definition (Least Upper Bound)

Let (P,≤) be a poset. For a subset X ⊆ P, the least upper bound
(supremum) of X , denoted

⊔
X , is an element x ∈ P such that:

• ∀y ∈ X , y ≤ x

• ∀z ∈ P, if ∀y ∈ X , y ≤ z , then x ≤ z
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Order Theory

We now define our structure preserving maps

Definition (Monotonicity)

Let P,Q be posets. A map f : P → Q is monotone iff
x ≤P y =⇒ f (x) ≤Q f (y) for all x , y ∈ P

Monotone = Order-Preserving
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Category Theory

To move forward in building a model of the λ-calculus we
introduce some category theory

Definition (Category)

A category C consists of a collection of objects Ob(C), and for any
A,B ∈Ob(C), a set C(A,B) of morphisms from A to B, satisfying
the following axioms:

• For each C ∈ Ob(C), there is a morphism IdC ∈ C(C ,C )

• For each A,B,C ∈ Ob(C), there is an associative composition
map ◦ : C(A,B)× C(B,C ) → C(A,C )

• For any A,B ∈ C, f ∈ C(A,B),

IdC ◦ f = f = f ◦ IdA
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Examples of Categories

• Set is a category in which objects are sets and morphisms are
functions between sets

• Pos is a category in which objects are partially ordered sets
and morphisms are monotone maps.

• Grp is a category in which objects are groups and morphisms
are group homomorphisms
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ω-Complete Partial Orders

We now introduce a category in which we can construct a model
of the untyped λ-calculus.

Definition (ω-Completeness)

A partially ordered set P is ω-complete if every increasing chain
C ⊆ P has a least upper bound in P.

Definition (Continuous Maps)

A map f : P → Q is continuous iff it is monotone and preserves
suprema of increasing chains, ie. f (

⊔
C ) =

⊔
f (C )

Definition (Ω-Pos)

The category of ω-complete partial orders and continous maps is
denoted Ω-Pos
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Closure Properties of Ω-Pos
The category Ω-Pos is closed under just the right operations to
make it a suitable denotational semantics

Theorem

If P,Q are ω-complete posets, then the set of all continuous maps
f : P → Q, denoted P → Q, is a ω-complete poset

In categorical terms, the function space P → Q is called an
exponential object, and this theorem states that Ω-Pos has
exponentials

Theorem

If P,Q are ω-complete posets, their cartesian product P × Q
ordered pairwise is an ω-complete poset

In categorical terms, Ω-Pos has products

A category with exponentials and products is called cartesian
closed
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Tarski’s Fixpoint Theorem

Definition (Fixed Point)

A fixed point of a function f : X → X is an element x ∈ X such
that f (x) = x

Definition (Least Fixed Point)

x ∈ X is a least fixed point if x ≤ x ′ for all fixed points x ′

Theorem (Tarski)

Let f ∈ Ω-Pos(P,P) where P has a least element ⊥. Then f has a
least fixed point fix(f ) =

⊔
{f n(⊥) | n ∈ N}

As mentioned with the Y -combinator, the existence of fixpoints
allows for recursive functions. Thus in a model of a programming
language, we’d have least fixed points correspond to recursive
algorithms.
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LFPs for Denotational Semantics

• Recall Ω-Pos is cartesian closed; cartesian closed categories
are known to be models of typed λ-calculi

• In a domain model of a computer program, the least element
⊥ can be used to represent non-terminating computations.

• Recursive functions correspond to fixed points of continuous
maps on a ω-CPO

• Continuity and approximation in domains allows one to
capture fundamental aspects of computability like iterative
computation and partial functions.
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Thank You!
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