Symplectic Geometry and its Role in Classical Mechanics

By Kason Kunkelmann Mentored by Tianyue Liu

Phase Space

 In classical mechanics, we often study space of all possible positions

$$\sum F = ma$$

 In other formulations of mechanics, namely Hamiltonian mechanics, we instead study the space of all positions and momenta together, called *phase space*

$$rac{dq}{dt} = rac{\partial H}{\partial p} \quad rac{dp}{dt} = -rac{\partial H}{\partial q}$$

Liouville's Theorem

- Consider a region in phase space, i.e. some bounded set of points (x,p), at some initial time
- It will have some volume
- Then Liouville's theorem says that if you let each point evolve in time (so the region will move and warp), then the total volume will remain the exact same
- This is a more geometric theorem, thus to generalize this result, we will dive into more geometric generalizations of our notions of phase space

Four phase space trajectories for falling objects

Configuration Space

- The idea of a configuration space (the set of all possible positions of a system) can be defined as a differentiable manifold, which is something that locally looks like \mathbb{R}^n , but is overall warped/curved
- Instead of a 3-D cartesian coordinate, the configuration space can be defined in terms of "generalized coordinates"
- The dimension is the number of degrees of freedom

Tangent Space/Bundle

- You have...
 - a tangent line to a curve
 - a tangent plane to a surface
 - tangent space for a general differentiable manifold
- Given an n-dimensional configuration space M and point x ∈ M, TM_x is the tangent space of M at x,
 i.e. the set of all tangent vectors based at x
 - $\rightarrow TM_x$ is also n-dimensional
 - Intuition: $v \in TM_x$ are the velocity vectors at position x
- The tangent bundle *TM* of a configuration space is the union of all tangent spaces and their base points
 - So if $x \in M$ and $v \in TM_x$, then $(x, v) \in TM$
 - \rightarrow TM is 2n-dimensional

Cotangent Space/Bundle

- The tangent space at a point on a configuration space is a vector space
- Thus we may take its dual: the cotangent space
 - Given TM_{χ} , the cotangent space is T^*M_{χ}
- It's the space of 1-forms on the tangent space
 - Think of $v \in TM_x$ as a column vector, and $p \in T^*M_x$ as a row vector
 - Intuition: $p \in T^*M_x$ are your momenta
- Similar to tangent bundles, the cotangent bundle T^*M is the union of all cotangent spaces and their base points
 - So if $x \in M$ and $p \in T^*M_x$, then $(x, p) \in T^*M$
 - $\rightarrow T^*M$ is 2n-dimensional
- So the cotangent bundle is just a generalization of phase space!

Symplectic 2-Form and Symplectic Manifolds

- Given a 2n-dimensional differentiable manifold M, a symplectic structure ω^2 is a closed nondegenerate 2-form on M
 - (M, ω^2) is called a symplectic manifold
- It turns out that the cotangent bundle (generalize phase space) has a natural symplectic structure, hence making it a symplectic manifold
- For a cotangent bundle T^*M with coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$, the symplectic structure is $\omega^2 = dp_1 \wedge dq_1 + \cdots + dp_n \wedge dq_n$
 - This is like the sum of projected areas in each 1d phase space
 - In fact by Darboux's theorem, $\forall (M, \omega^2)$, locally $\exists (q_1, \dots, q_n, p_1, \dots, p_n) s.t.$ $\omega^2 = dp_1 \wedge dq_1 + \dots + dp_n \wedge dq_n$

• In matrix form,
$$\omega^2 = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$

Hamiltonian Phase Flow

- Let M^{2n} be a 2n-dimensional symplectic manifold and suppose a particle starts with "position" $(\vec{q}_0, \vec{p}_0) \in M^{2n}$
 - This could be initial position and momentum on a cotangent bundle (phase space)
- Then the solution to Hamilton's eq'ns $(\vec{q}(t), \vec{p}(t))$ can be written as $(\vec{q}(t), \vec{p}(t)) = g^t(\vec{q}_0, \vec{p}_0)$, where g^t is 1-parameter group of diffeomorphisms called the **Hamiltonian Phase Flow**
 - You can think of g^t as time-evolving whatever initial state it's applied to

A Generalization of Liouville's Theorem

Theorem: for any 2-chain c in M²ⁿ (just think of a 2d surface in our cotangent bundle, i.e. generalized phase space), we have that ∀ time t

$$\int_c \omega^2 = \int_{g^t c} \omega^2$$

• Intuition: the sum of the projected areas in each 1D phase space stays constant

- Let $(\omega^2)^k \coloneqq \omega^2 \wedge \omega^2 \wedge \cdots \wedge \omega^2$ k times • $\rightarrow (\omega^2)^n =$ volume form on M^{2n}
- Corollary: $\forall k=1,...,n$, and for any 2k-chain in M^{2n} , we have that \forall time t $\int_{c} (\omega^{2})^{k} = \int_{a^{t}c} (\omega^{2})^{k}$
 - → In particular, volume of a region is constant in time, i.e. Liouville's Theorem

Thank you!

- Thank you Tianyue for the very helpful insights and your flexibility
- And thank you to everyone who helped organize the DRP

Citations

- Pictures:
 - Slide 2 picture:
 - <u>13.1: The motion of a spring-mass system Physics LibreTexts</u>
 - Slide 3 picture:
 - Liouville (virginia.edu)
 - Slide 4 and 5 pictures:
 - A'rnold's Mathematical Methods of Classical Mechanics
- Readings:
 - A'rnold's <u>Mathematical Methods of Classical Mechanics</u>
 - Maxim Jeffs' <u>Classical Mechanics</u>