# To Ball or <br> Not to Ball 

-Dylan Perlstein

## Table of contents

## 01

Model

- Predictors
- Assumption

Predictions

- Validity
- Accuracy


## Applications

- Baseball betting


## 01 Modelling



## Model

## Logistic Regression

- Used a Logistic Regression to predict the logit(p(Ball)),
- Then got the log(odds ratio) to get the probabilities of a ball

Ball $\sim \beta_{0}+\beta_{1}$ HandMatch $+\beta_{2}$ BatterQuality $+\beta_{3}$ PitcherQuality + $\beta_{i}$ Count:Outs:Base Sate

- As we can see, the count, outs, and base states are interacted, leading to 96 different Betas for the interactions



## 

- Count

Balls and Strikes

- Base State

Only looked at 4 base states: "Loaded", "RISP", "Men On", "Empty

- Outs
$0,1,2$
- Batter and Pitcher handedness

This is a binary category for if the batter and pitcher use the same hand or not
For Example: 1 if the Pitcher is R and the batter is R , 0 if Pitcher is $R$ and Batter is $L$

- Batter and Pitcher Quality metrics
rWoba: a rolling metric that computes weighted on base average (basically it adds weights to each at bat outcome and takes the Sum/number of at bats) Used Empirical Bayes to account for lack of sample size early in the season
- mean(MLBwOBA) + rWoba / $(50+\mathrm{PA})$
- $50=$ "Fake" data, PA is actual number of plate appearances



## Validity

## Are we seeing things that make sense logically?

- Hand Match: The coefficient is negative. In baseball, batters, on average, are worse against the same hand, so getting a ball, a good batter event, should be less likely
- Beta for 3 balls 0 strikes 0 outs Empty: - 17
- Why does this make sense? In baseball, hitters swing about $10 \%$ of the time when it is $3-0$, and pithers know this, so they "steal" a strike knowing they aren't swinging
- As we can see, the model is lining up with general baseball knowledge: Good Sign!


## Acouracy

## Log Loss

- When modelling, I tried many different models, based on different interactions and treating variables as numeric or categorical and needed to assess which was the best
- Actual: 1 if the pitch was a ball, 0 if not




## Sports

 Betting- Disclaimer: I do not condone gambling and sportsbooks are hard to beat
- It's really hard to beat the book on game odds, but live odds are much harder for them to predict so there may be an edge
- Sportsbooks now offer betting lines on the outcome of each individual pitch!
- This is what my model is predicting, so if my model's odds of a ball are higher than the implied gambling odds, ARBITRAGE = \$\$\$


## Example 1

## Gunnar Henderson vs Clarke Schmidt: 1 out, 0-1 with Empty base state



My model predicts a ball with probability .617 , while the implied probability of +125 odds is .44 , therefore there is value in this bet

What actually happened? It was a ball

## Example 2

Vidal Brujan vs Jake Irvin: 2 outs, 0-1 with RISP


Here, again, we have +125 odds for a ball which equals an implied probability of.44. Taking into account the game states and the hitter and batter, my model gives a probability of ball of .31 , which is far lower than the odds, therefore I would not bet.

What happened? A strike, which is not a ball.

## Thanks!

## Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics \& images by Freepik

