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Let’s say we have two algebraic equations: y = x2 and x2 = 0
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Figure: Graph of y = x2 and x2 = 0
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Attempt 1: Algebraic Variety Point of View

Define two polynomial functions f (x , y) := y − x2 and
g(x , y) := x2

Consider their vanishing set, the set of points in the plane
where both polynomials are equal to zero.

Formally,

V (f , g) :=
{
(x0, y0) ∈ A2| y0 − x20 = x20 = 0} = {(0, 0)

}
So f and g intersect at a single point!
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Missing the Big Picture

If we instead consider y − x2 = 0 and x = 0, we would obtain
the same points.

We don’t see multiplicity of intersection: Consider the curve
(x − t)(x + t) = 0. For t ̸= 0, this intersect the parabola at
two points.

It’s time to hatch a scheme!
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Abstraction

We can endow any commutative ring with a geometric
structure.

points ⇝ prime ideals

functions ⇝ ideals

vanishing ⇝ containment
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Affine Schemes (Topology)

Let R be a commutative ring. Then the spectrum of R,
denoted Spec(R), is the set of all prime ideals p in R, our
points.

For any ideal I ⊂ R, we define

V (I ) := {p ∈ Spec(R)|I ⊂ p}

We can now define a topology on Spec(R) where V (I ) are
our closed sets. This is the Zariski Topology on Spec(R).
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Zariski Topology (Example)

Let R = k[x ] for some algebraically closed field k. Then,
Spec(R) = {(x − α)|α ∈ k}.

Since k[x ] is a PID, any ideal is of the form I = (f (x)) for
some fixed polynomial f . V (I ) is just the set of linear factors
of f , which is finite.

Therefore, any closed set in Spec(R) is a finite set of points
or all of Spec(R).
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Zariski Topology (Example)

Figure: The Zariski Topology of R[x ]
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Further Abstraction

For many geometric spaces, we want to consider the functions
defined locally on the space.

E.g. Smooth Manifolds- for each open subset U, we consider
the differentiable functions defined there.
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Affine Schemes (Sheaf)

For an open subset U ⊂ Spec(R), we want to say what
”functions” are well-defined there.

A pre-sheaf on a topological space X is an assignment for
each open set U, a set F(U) of ”functions,” together with
restriction maps. For any open subset V ⊂ U, a map
F(U) → F(V ), compatible with composition.

A sheaf satisfies further properties consistent with our
”functional” intuition.
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Sheaf Example

Let’s return to R = k[x ] and X = Spec(R). We can endow it
with a sheaf called the structure sheaf OX , of algebraic
functions.

For U = X , the algebraic functions that make sense on U are
polynomials, i.e. elements h ∈ k[x ]. Thus, OX (X ) = k[x ].

Let g(x) := x − α and U = X \ V (g), i.e. all points besides
x − α. Functions that are well defined here are of the form

f (x)

(x − α)n

for f ∈ k[x ] and n a natural number. Formally, we have
OX (U) = k[x ]g .



Scheming about Schemes

Sheaf Example

Let’s return to R = k[x ] and X = Spec(R). We can endow it
with a sheaf called the structure sheaf OX , of algebraic
functions.

For U = X , the algebraic functions that make sense on U are
polynomials, i.e. elements h ∈ k[x ]. Thus, OX (X ) = k[x ].

Let g(x) := x − α and U = X \ V (g), i.e. all points besides
x − α. Functions that are well defined here are of the form

f (x)

(x − α)n

for f ∈ k[x ] and n a natural number. Formally, we have
OX (U) = k[x ]g .



Scheming about Schemes

Sheaf Example

Let’s return to R = k[x ] and X = Spec(R). We can endow it
with a sheaf called the structure sheaf OX , of algebraic
functions.

For U = X , the algebraic functions that make sense on U are
polynomials, i.e. elements h ∈ k[x ]. Thus, OX (X ) = k[x ].

Let g(x) := x − α and U = X \ V (g), i.e. all points besides
x − α. Functions that are well defined here are of the form

f (x)

(x − α)n

for f ∈ k[x ] and n a natural number. Formally, we have
OX (U) = k[x ]g .



Scheming about Schemes

Scheme Definition

An affine scheme is a topological space which is isomorphic
to Spec(R) for some ring R, along with the corresponding
structure sheaf OX .

A scheme is a topological space which has an open covering
of affine schemes.
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Returning to the Original Problem

As a scheme, we can define the intersection of our two curves
y = x2 and x2 = 0 as R ′ := k[x , y ]/(y − x2, x2).

R ′ is isomorphic to k[x ]/x2. To count the multiplicity, we find
the dimension of R ′ as a k vector space, which is 2.

Therefore the scheme theoretic language captures this
multiplicity, and much more!
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