Scheming about Schemes

Ethan Soloway

May 2nd, 2024

Motivating Problem

- Let's say we have two algebraic equations: $y=x^{2}$ and $x^{2}=0$

Motivating Problem

- Let's say we have two algebraic equations: $y=x^{2}$ and $x^{2}=0$

■ Question: How many times do they intersect?

Motivating Problem

- Let's say we have two algebraic equations: $y=x^{2}$ and $x^{2}=0$

■ Question: How many times do they intersect?

Figure: Graph of $y=x^{2}$ and $x^{2}=0$

Attempt 1: Algebraic Variety Point of View

- Define two polynomial functions $f(x, y):=y-x^{2}$ and $g(x, y):=x^{2}$

Attempt 1: Algebraic Variety Point of View

- Define two polynomial functions $f(x, y):=y-x^{2}$ and $g(x, y):=x^{2}$
- Consider their vanishing set, the set of points in the plane where both polynomials are equal to zero.

Attempt 1: Algebraic Variety Point of View

- Define two polynomial functions $f(x, y):=y-x^{2}$ and $g(x, y):=x^{2}$
- Consider their vanishing set, the set of points in the plane where both polynomials are equal to zero.
- Formally,

$$
V(f, g):=\left\{\left(x_{0}, y_{0}\right) \in \mathbb{A}^{2} \mid y_{0}-x_{0}^{2}=x_{0}^{2}=0\right\}=\{(0,0)\}
$$

Attempt 1: Algebraic Variety Point of View

- Define two polynomial functions $f(x, y):=y-x^{2}$ and $g(x, y):=x^{2}$
- Consider their vanishing set, the set of points in the plane where both polynomials are equal to zero.
- Formally,

$$
V(f, g):=\left\{\left(x_{0}, y_{0}\right) \in \mathbb{A}^{2} \mid y_{0}-x_{0}^{2}=x_{0}^{2}=0\right\}=\{(0,0)\}
$$

■ So f and g intersect at a single point!

Missing the Big Picture

- If we instead consider $y-x^{2}=0$ and $x=0$, we would obtain the same points.

Missing the Big Picture

- If we instead consider $y-x^{2}=0$ and $x=0$, we would obtain the same points.

■ We don't see multiplicity of intersection: Consider the curve $(x-t)(x+t)=0$. For $t \neq 0$, this intersect the parabola at two points.

Missing the Big Picture

- If we instead consider $y-x^{2}=0$ and $x=0$, we would obtain the same points.

■ We don't see multiplicity of intersection: Consider the curve $(x-t)(x+t)=0$. For $t \neq 0$, this intersect the parabola at two points.

■ It's time to hatch a scheme!

Abstraction

- We can endow any commutative ring with a geometric structure.

Abstraction

- We can endow any commutative ring with a geometric structure.
- points \rightsquigarrow prime ideals

Abstraction

- We can endow any commutative ring with a geometric structure.
- points \rightsquigarrow prime ideals
- functions \rightsquigarrow ideals

Abstraction

- We can endow any commutative ring with a geometric structure.
- points \rightsquigarrow prime ideals
- functions \rightsquigarrow ideals

■ vanishing \rightsquigarrow containment

Affine Schemes (Topology)

■ Let R be a commutative ring. Then the spectrum of R, denoted $\operatorname{Spec}(R)$, is the set of all prime ideals \mathfrak{p} in R, our points.

Affine Schemes (Topology)

■ Let R be a commutative ring. Then the spectrum of R, denoted $\operatorname{Spec}(R)$, is the set of all prime ideals \mathfrak{p} in R, our points.

■ For any ideal $I \subset R$, we define

$$
V(I):=\{\mathfrak{p} \in \operatorname{Spec}(R) \mid I \subset \mathfrak{p}\}
$$

Affine Schemes (Topology)

$■$ Let R be a commutative ring. Then the spectrum of R, denoted $\operatorname{Spec}(R)$, is the set of all prime ideals \mathfrak{p} in R, our points.

■ For any ideal $I \subset R$, we define

$$
V(I):=\{\mathfrak{p} \in \operatorname{Spec}(R) \mid I \subset \mathfrak{p}\}
$$

- We can now define a topology on $\operatorname{Spec}(R)$ where $V(I)$ are our closed sets. This is the Zariski Topology on $\operatorname{Spec}(R)$.

Zariski Topology (Example)

■ Let $R=k[x]$ for some algebraically closed field k. Then, $\operatorname{Spec}(R)=\{(x-\alpha) \mid \alpha \in k\}$.

Zariski Topology (Example)

■ Let $R=k[x]$ for some algebraically closed field k. Then, $\operatorname{Spec}(R)=\{(x-\alpha) \mid \alpha \in k\}$.

- Since $k[x]$ is a PID, any ideal is of the form $I=(f(x))$ for some fixed polynomial $f . V(I)$ is just the set of linear factors of f, which is finite.

Zariski Topology (Example)

■ Let $R=k[x]$ for some algebraically closed field k. Then, $\operatorname{Spec}(R)=\{(x-\alpha) \mid \alpha \in k\}$.

- Since $k[x]$ is a PID, any ideal is of the form $I=(f(x))$ for some fixed polynomial $f . V(I)$ is just the set of linear factors of f, which is finite.

■ Therefore, any closed set in $\operatorname{Spec}(R)$ is a finite set of points or all of $\operatorname{Spec}(R)$.

Zariski Topology (Example)

Figure: The Zariski Topology of $\mathbb{R}[x]$

Further Abstraction

- For many geometric spaces, we want to consider the functions defined locally on the space.

■ E.g. Smooth Manifolds- for each open subset U, we consider the differentiable functions defined there.

Affine Schemes (Sheaf)

■ For an open subset $U \subset \operatorname{Spec}(R)$, we want to say what "functions" are well-defined there.

Affine Schemes (Sheaf)

■ For an open subset $U \subset \operatorname{Spec}(R)$, we want to say what "functions" are well-defined there.

■ A pre-sheaf on a topological space X is an assignment for each open set U, a set $\mathcal{F}(U)$ of "functions," together with restriction maps. For any open subset $V \subset U$, a map $\mathcal{F}(U) \rightarrow \mathcal{F}(V)$, compatible with composition.

Affine Schemes (Sheaf)

■ For an open subset $U \subset \operatorname{Spec}(R)$, we want to say what "functions" are well-defined there.

■ A pre-sheaf on a topological space X is an assignment for each open set U, a set $\mathcal{F}(U)$ of "functions," together with restriction maps. For any open subset $V \subset U$, a map $\mathcal{F}(U) \rightarrow \mathcal{F}(V)$, compatible with composition.

- A sheaf satisfies further properties consistent with our "functional" intuition.

Sheaf Example

■ Let's return to $R=k[x]$ and $X=\operatorname{Spec}(R)$. We can endow it with a sheaf called the structure sheaf \mathcal{O}_{X}, of algebraic functions.

Sheaf Example

■ Let's return to $R=k[x]$ and $X=\operatorname{Spec}(R)$. We can endow it with a sheaf called the structure sheaf \mathcal{O}_{X}, of algebraic functions.

■ For $U=X$, the algebraic functions that make sense on U are polynomials, i.e. elements $h \in k[x]$. Thus, $\mathcal{O}_{X}(X)=k[x]$.

Sheaf Example

■ Let's return to $R=k[x]$ and $X=\operatorname{Spec}(R)$. We can endow it with a sheaf called the structure sheaf \mathcal{O}_{X}, of algebraic functions.

■ For $U=X$, the algebraic functions that make sense on U are polynomials, i.e. elements $h \in k[x]$. Thus, $\mathcal{O}_{X}(X)=k[x]$.

■ Let $g(x):=x-\alpha$ and $U=X \backslash V(g)$, i.e. all points besides $x-\alpha$. Functions that are well defined here are of the form

$$
\frac{f(x)}{(x-\alpha)^{n}}
$$

for $f \in k[x]$ and n a natural number. Formally, we have $\mathcal{O}_{X}(U)=k[x]_{g}$.

Scheme Definition

- An affine scheme is a topological space which is isomorphic to $\operatorname{Spec}(R)$ for some ring R, along with the corresponding structure sheaf \mathcal{O}_{X}.

Scheme Definition

- An affine scheme is a topological space which is isomorphic to $\operatorname{Spec}(R)$ for some ring R, along with the corresponding structure sheaf \mathcal{O}_{X}.
- A scheme is a topological space which has an open covering of affine schemes.

Returning to the Original Problem

■ As a scheme, we can define the intersection of our two curves $y=x^{2}$ and $x^{2}=0$ as $R^{\prime}:=k[x, y] /\left(y-x^{2}, x^{2}\right)$.

Returning to the Original Problem

■ As a scheme, we can define the intersection of our two curves $y=x^{2}$ and $x^{2}=0$ as $R^{\prime}:=k[x, y] /\left(y-x^{2}, x^{2}\right)$.

- R^{\prime} is isomorphic to $k[x] / x^{2}$. To count the multiplicity, we find the dimension of R^{\prime} as a k vector space, which is 2 .

Returning to the Original Problem

■ As a scheme, we can define the intersection of our two curves $y=x^{2}$ and $x^{2}=0$ as $R^{\prime}:=k[x, y] /\left(y-x^{2}, x^{2}\right)$.

- R^{\prime} is isomorphic to $k[x] / x^{2}$. To count the multiplicity, we find the dimension of R^{\prime} as a k vector space, which is 2 .
- Therefore the scheme theoretic language captures this multiplicity, and much more!

