A Logic for Language: Exploring the Lambek Calculus

Eric Tao (Mentor: Eben Blaisdell)

University of Pennsylvania Directed Reading Program, May 2024 • Syntax: In sentence a determines order the words of what? (What determines the order of words in a sentence?)

- Syntax: In sentence a determines order the words of what? (What determines the order of words in a sentence?)
- Semantics: How do we combine the meanings of individual words into the meaning of an entire sentence?

- **Syntax:** In sentence a determines order the words of what? (What determines the order of words in a sentence?)
- Semantics: How do we combine the meanings of individual words into the meaning of an entire sentence?

- Syntax: In sentence a determines order the words of what? (What determines the order of words in a sentence?)
 = mathematical proofs
- Semantics: How do we combine the meanings of individual words into the meaning of an entire sentence?

- Syntax: In sentence a determines order the words of what? (What determines the order of words in a sentence?)
 = mathematical proofs
- **Semantics:** How do we combine the meanings of individual words into the meaning of an entire sentence?
 - = computer programs

- Syntax: In sentence a determines order the words of what? (What determines the order of words in a sentence?)
 = mathematical proofs
- Semantics: How do we combine the meanings of individual words into the meaning of an entire sentence?
 = computer programs
- The Miracle (Curry–Howard): mathematical proofs = computer programs :)

What's in a proof?

Socrates is a man.
 All men are mortal.
 Therefore, Socrates is mortal.

- Socrates is a man.
 All men are mortal.
 Therefore, Socrates is mortal.
- UPenn is an Ivy League institution. All Ivy League institutions are paragons of mental health. Therefore, UPenn is a paragon of mental health.

- Socrates is a man.
 All men are mortal.
 Therefore, Socrates is mortal.
- UPenn is an Ivy League institution. All Ivy League institutions are paragons of mental health. Therefore, UPenn is a paragon of mental health.

• P. P implies Q. Therefore, Q.

- Socrates is a man.
 All men are mortal.
 Therefore, Socrates is mortal.
- UPenn is an Ivy League institution. All Ivy League institutions are paragons of mental health. Therefore, UPenn is a paragon of mental health.

• P. P implies Q. Therefore, Q.

$$\cdot \frac{P \qquad P \to Q}{Q}$$

• "P. If P, then Q. If Q, then R. Therefore, R."

 $P, P \to Q, Q \to R \vdash R$

• "P. If P, then Q. If Q, then R. Therefore, R."

 $P, P \rightarrow Q, Q \rightarrow R \vdash R$

• Proof tree:

$$\frac{P \qquad P \to Q}{Q} \qquad Q \to R$$

• "P. If P, then Q. If Q, then R. Therefore, R."

 $P, P \to Q, Q \to R \vdash R$

• Proof tree:

$$\frac{P \qquad P \rightarrow Q}{Q} \qquad Q \rightarrow R}{R}$$

• Reference picture, in case it's been a while since you left DRL:

Figure 1: Happy Earth week!

• Data: THE JABBERWOCK GIMBLES

Sentences are trees too

- Data: THE JABBERWOCK GIMBLES
- As a tree:

Sentences are trees too

• Data: THE JABBERWOCK GIMBLES

• As a right-side-up tree:

THE	JABBERWOCK	
DET	N	GIMBLES
	NP	VP
	S	

• When a linguistic tree...

What if...

• When a linguistic tree...

THE	JABBERWOCK	
DET	N	GIMBLES
	NP	VP
	S	

• ... becomes a proof!

THE	JABBERW	ОСК	
$N \rightarrow NP$	N		GIMBLES
Ν	1P		$NP \rightarrow S$
		S	

• When a linguistic tree...

...becomes a proof!

THE	JABBERWOCK	
$N \rightarrow NP$	N	GIMBLES
NP		$NP \rightarrow S$
	S	

• So saying that a sentence is grammatical is the same as saying that if we have the parts of the sentence as assumptions, we can prove S

$$x_1 \dots x_n$$
 is grammatical $\iff x_1, \dots, x_n \vdash S$

Complications

• Some problems with orderings:

$$P_1, P_2, P_3 \vdash Q \implies P_2, P_3, P_1 \vdash Q,$$

but

the, dog, runs \vdash S \implies dog, runs, the \vdash S.

• Some problems with orderings:

$$P_1, P_2, P_3 \vdash Q \implies P_2, P_3, P_1 \vdash Q,$$

but

the, dog, runs \vdash S \implies dog, runs, the \vdash S.

• Some problems with adding assumptions:

$$P_1, P_2, P_3 \vdash Q \implies P_1, P_2, P_3, P_4 \vdash Q,$$

but

the, dog, runs \vdash S \implies the, dog, runs, faucet \vdash S.

Lambek calculus to the rescue!

• A substructural logic where order matters

Lambek calculus to the rescue!

- A substructural logic where order matters
- Features one implication arrow for each direction!

Lambek calculus to the rescue!

- A substructural logic where order matters
- Features one implication arrow for each direction!

• We can use this to fix our proof from earlier:

The
NP
$$\leftarrow$$
 NJabberwock
NgimblesNPNP \rightarrow SS

• What if we read $A \rightarrow B$ as the type of a function that takes something of type A to something of type B?

- What if we read $A \rightarrow B$ as the type of a function that takes something of type A to something of type B?
- We can translate each of the proof rules:

F

unction application	Function definition
	Ø [A]
$A \qquad A \to B$	•
В	В
	$A \rightarrow B$

- What if we read $A \rightarrow B$ as the type of a function that takes something of type A to something of type B?
- We can translate each of the proof rules:

Function applicationFunction definitionA $A \rightarrow B$ \vdots B \underline{B} \underline{B} $A \rightarrow B$ $A \rightarrow B$

• This is the Curry–Howard correspondence: we've turned a proof into the instructions of a program!

• Example from before:

• Example from before:

• Translation:

gimbles(the(Jabberwock))

• Example from before:

• Translation:

gimbles(the(Jabberwock))

- Jabberwock = the set of all Jabberwocks, the(S) = the sole member of S, gimbles(x) = true if x gimbles, false otherwise.
- Sentences are programs that compute whether to output "true" or "false" based on the circumstances

• In mathematics, we know that one theorem can have multiple proofs

- In mathematics, we know that one theorem can have multiple proofs
- Can one sentence have multiple proofs too?

- In mathematics, we know that one theorem can have multiple proofs
- Can one sentence have multiple proofs too?
- EVERY STUDENT STUDIES A PROOF

- In mathematics, we know that one theorem can have multiple proofs
- · Can one sentence have multiple proofs too?
- EVERY STUDENT STUDIES A PROOF
- Two interpretations (skipping some proof steps):

A tale of two trees (continued)

		STUDIES		A PROOF
_	EVERY STUDENT	$(NP \rightarrow S) \leftarrow NP$	(S	$\leftarrow NP) \rightarrow S$
•	$S \leftarrow (NP \rightarrow S)$	NP	ightarrow S	
		S		
	EVERY STUDENT	STUDIES		
	$S \leftarrow (NP \rightarrow S)$	$(NP \rightarrow S) \leftarrow NP$		A PROOF
	$S \leftarrow NP$		(S	$\leftarrow NP) \rightarrow S$
		S		

A tale of two trees (continued)

	STUDIES	A PROOF
EVERY STUDENT	$(NP \rightarrow S) \leftarrow NP$	$(S \leftarrow NP) \rightarrow S$
$S \leftarrow (NP \rightarrow S)$	NP -	\rightarrow S
	S	
EVERY STUDENT	STUDIES	
$S \leftarrow (NP \rightarrow S)$	$(NP \rightarrow S) \leftarrow NP$	A PROOF
S ←	- NP	$(S \leftarrow NP) \rightarrow S$
	S	

• Curry–Howard says:

 $\begin{cases} true & \forall s : student, \exists p : proof, s studies p \\ false & otherwise \end{cases}$

VS

 $\begin{cases} true & \exists p : proof, \forall s : student, s studies p \\ false & otherwise \end{cases}$

A tale of two trees (continued)

Figure 2: MATH 6010 students reading Allen Hatcher's Algebraic Topology

• Syntax = mathematical proofs

- Syntax = mathematical proofs
- Semantics = computer programs

- Syntax = mathematical proofs
- Semantics = computer programs
- Mathematical proofs = computer programs (Curry–Howard)

- Syntax = mathematical proofs
- Semantics = computer programs
- Mathematical proofs = computer programs (Curry–Howard)
- Mathematical logic is amazing!