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Surface-driven flows are ubiquitous in nature, from subcellular cytoplasmic streaming to
organ-scale ciliary arrays. Here we model how confined geometries can be used to engineer
complex hydrodynamic patterns driven by activity prescribed solely on the boundary.
Specifically, we simulate light-controlled surface-driven active matter, probing the emer-
gent properties of a suspension of active colloids that can bind and unbind from surfaces of
a closed microchamber, together creating an active carpet. The attached colloids generate
large-scale flows that in turn can advect detached particles toward the walls. Switching
the particle velocities with light, we program the active suspension and demonstrate a rich
design space of flow patterns characterized by topological defects. We derive the possible
mode structures and use this theory to optimize different microfluidic functions including
hydrodynamic compartmentalization and chaotic mixing. Our results pave the way toward
designing and controlling surface-driven active fluids.
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I. INTRODUCTION

The ability of biological organisms to self-assemble and organize has inspired new ideas in
engineering and physics. Unlike traditional materials, active matter consumes energy at the scale of
each individual particle, and local interactions between such particles give rise to complex collective
behaviors [1–12]. As such, the self-organizing capability of active matter makes it a fertile ground
for new design principles and technologies. However, the realization of such devices is contingent
upon our currently limited ability to control or program them [13–17].

As a strategy for designing tunable active matter, we are inspired by the prevalence of surface-
driven activity in nature. Rather than programming activity in the bulk, one could potentially
prescribe what is on the boundary, which in turn modulates and controls bulk flows. For example,
in human airways the coordinated motion of micron-scale cilia across the entire organ drives
coherent flows and is essential for mucus clearance [18–20]. Furthermore, cytoplasmic streaming
in characean algae is a salient example of surface-driven activity at the subcellular scale: Organelle-
carrying myosin motors walk along fixed actin tracks, resulting in macroscopic circulation of the
cytoplasm [15,21–24]. Synthetic examples of active surfaces include artificial cilia [25–30], phoretic
pumps [31–35], self-propelled droplets and colloids accumulated on walls [36–40], Quincke rollers
[36], engineered bacterial carpets [41–43], flows generated by gradients of interfacial tension [44],
and molecular motility assays [45].
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FIG. 1. Experimental proposal for surface-driven flows in confined volumes. (a) In vitro reconstitution of
cytoplasmic streaming as a basis for engineering flows. Load-carrying molecular motors walk along polarized
and aligned actin filaments pinned to a surface. The viscous drag on the load (colloidal particles) imparts
momentum in the surrounding fluid, and the action of many such particles can lead to emergent bulk flows.
(b) The top shows that molecular motors have been genetically engineered to switch their direction of motion
along a filament in response to blue light (see [49]). It is shown on the bottom that, by patterning the boundary
with light, one can dynamically control the flow structure of a chamber with spatiotemporal precision.

The ability to micromanipulate flow structures is of great interest for applications such as mi-
crofluidics and laboratory-on-a-chip devices [46,47]. Yet miniaturizing self-contained microfluidic
devices that do not require external macroscopic pumps and valves has remained a major challenge
in the field. A solution could be to instead generate flows internally by injecting momentum from
patterned active surfaces [42], but little is understood how such topological patterns affect the
flow properties and structures that can emerge across the scales. In other words, while external
pressure-driven microfluidics are now ubiquitous in research and industrial applications, the design
space of internally driven flows using surface activity in confined geometries is almost entirely
unknown. As such, there are two issues to be addressed: the experimental parameters necessary
for the realization of surface-driven flows and the elucidation of the design space of active surface
patterning.

In the first half of the paper we propose an experimental realization of surface-driven active flows
using light-controllable molecular motors (Fig. 1). Light has proven to be a powerful experimental
handle in living systems due to its ability to target molecules with high spatiotemporal resolution
[16]. Of particular interest to us, engineered cytoskeletal motors incorporating a photosensitive
LOV2 domain have been shown to modulate their speed or direction in response to blue light
[48,49] [Fig. 1(b)]. We develop an in silico model consisting of aligned filament tracks patterned
across a single active boundary of a closed rectangular flow chamber [Fig. 1(a)]. Viscous drag on
cargo-carrying molecular motors, whose direction along the tracks is switchable by light, impart
momentum into their surroundings, entraining the local fluid. We demonstrate that our proposed
system is capable of generating macroscopic steady-state flows within a regime of realistic motor
properties. We then perturb the system with light to explore the design space of possible flow
structures using two fundamental modes we term the head-on and shear defects. In contrast with
other theoretical works involving cytoplasmic streaming [23,24], we explicitly consider stochastic
dynamics of particles that can attach and detach from the active carpet.

In the second half of the paper we introduce an analytical framework based on the interior
squirmer model to further generalize these flow structures and explore the full design space of
surface activity. We demonstrate that surface-driven flows can achieve remarkably complex three-
dimensional (3D) flow structures with properties like chaotic mixing and particle confinement with
no physical barriers. Overall, our results provide insight into boundary-driven flows in naturally
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occurring biological systems and pave the way for using surface activity to program reconfigurable
bulk flows at small scales.

II. SYSTEM DESCRIPTION

Our in silico experiment of surface-driven flows focuses on a closed rectangular chamber, where
surfaces can be patterned by actin tracks that are parallel and polarized in orientation [Fig. 2(a)].
Active particles in our system consist of colloids coated with molecular motors [Fig. 2(a), green
particles]. These particles are suspended in bulk and can attach to the surface, after which they walk
ballistically from the minus to the plus end of the tracks in the absence of light and reverse direction
in the presence of light. As these particles move along the surface, they entrain the local fluid and
may generate long-range circulating flows. Particles in the bulk are advected by these flows, which in
turn can transport them toward the surface, to which they can bind and unbind through probabilities
of attachment or detachment.

In previous experiments, aligned tracks have been realized in various settings for over two
decades. For example, F-actin can be aligned with electric fields [50]. The polar alignment of
microtubules on glass surfaces has also been achieved using hydrodynamic flows [51] or aligned
polymerization [52]. Furthermore, the field of engineering molecular motors is becoming more
established. Different types of motors have been engineered to walk backward [53], to respond
dynamically to calcium signals [54] or to light [48]. Most recently, Ruijgrok et al. have demonstrated
the directional switching of processive myosin motors in response to blue light [49]. Engineered
molecular motors have already found various applications in other synthetic systems, such as the
optogenetic control of cytoskeletal suspensions [16,55,56].

Our methods are described in detail in the Supplemental Material [57] (see also Refs. [54,58–
68]). In brief, to solve for the system dynamics, we alternate between (i) computing the flow
field u(r) at position r using a computational fluid dynamics (CFD) solver [58], (ii) integrating
the bulk particle motion with Brownian dynamics, and (iii) updating the surface particle density
and dynamics. For the first step, inspired by Lighthill [59] and Blake [60], we implement a slip
velocity on the active surface due to the motion of the bound particles [Fig. 2(b)]. In the dense
particle limit, the surrounding flow will saturate to the particle speed, but in the sparse limit
the velocity vanishes. In between, we ignore interparticle interactions and assume that the flow
magnitude is approximately linear with respect to particle concentration (see Fig. S1 in [57]). We
have additionally validated our CFD solver against a few simple benchmarks (Figs. S2– S5 in [57]).

Detached particles in the bulk are subject to advection and diffusion. Their relative strengths are
set by the Péclet number Pe = LV/D, where V is the characteristic velocity of the motors, L is the
longest chamber length, and D is the diffusion constant. We solve for particle trajectories in the bulk
by integrating the Langevin equation in the overdamped limit

ri(t + dt ) = ui(t )dt +
√

2Ddtηi(t ), (1)

where i refers to components of the position r = {x, y, z} in Cartesian coordinates, the time step is dt ,
and η(t ) is uncorrelated Gaussian white noise defined by 〈ηi(t )〉 = 0 and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′)
in terms of the Kronecker and Dirac delta functions.

Particles that approach the surface closer than a cutoff ε can attach with rate Pon, modeled
as a linearly decreasing function of particle density [Fig. 2(c)]. We assume that the particles are
otherwise noninteracting. On the boundary, particles walk ballistically with a direction specified by
the orientation of the tracks and the pattern of light. Conversely, bound particles can detach from
the surface with a constant rate Poff [Fig. 2(d)]. Initially, the boundary is uniformly populated with
a density equal to half the surface coverage, and no motile particles are initialized in the bulk.

In our model, the important parameters to vary are Pe and Poff. The former sets the diffusivity of
the active colloids while keeping the chamber geometry and particle velocity constant and the latter
has a nice interpretation in terms of motor processivity (average run length before detachment).
The other parameters Pon and the Reynolds number Re = ρV L/μ (with ρ and μ the density and
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FIG. 2. Model for surface-driven flows in confined volumes. (a) Confined chamber of size Nx × Ny × Nz =
20 × 20 × 10 that consists of a single active surface at z = 0, uniformly coated with parallel and polarized actin
filaments. The gray lines denote the orientation of particle trajectories on the surface. Active colloidal particles
(green) bind and unbind from the surface with rates Pon and Poff. Bound particles walk ballistically in a fixed
direction along the tracks, imparting momentum on the surrounding fluid and creating macroscopic flows.
Unbound particles are free to advect and diffuse in the bulk, with relative strength set by the Péclet number
Pe. (b) The velocity at each grid point v∂�(x) on the boundary increases linearly with particle concentration
and saturates to the particle speed V . (c) The attachment rate Pon decreases linearly to zero at the saturating
concentration ρsat, a value which is set by the grid and particle size, while (d) the detachment rate Poff is
modeled as a constant. (e)–(g) Simulation results for a simple case: uniform flow in a closed chamber. All
results are from snapshots of simulations recorded after simulating for 2 × 106 time steps to approach steady
state, with each time step dt ≈ 10−6L/V s. (e) The magnitude of the velocity at each point on the boundary
for a specific choice of parameters [the optimum in (g)] shows an accumulation of particles toward the right
edge of the chamber. The color bar depicts the flow magnitude on the surface, scaled by V to a maximum of
one. (f) The existence of a wall forces the fluid at the edge upward, creating a 2D vortex in the xz plane. (g)
Phase diagram of Poff and Pe, showing that high streaming velocities in a confined volume favor low Pe and an
intermediate detachment rate. The average streaming velocity 〈|u|〉/V is shown at z/H = 0.2 averaged in the
x and y directions across the chamber. Here Pe is varied by changing D and keeping L and V constant. The Poff

is reported in units of probability per time step.

dynamic viscosity of water, respectively) are fixed throughout our simulations, with Re ∼ 0, well
in the viscous regime. Unless explicitly mentioned otherwise, we report all results in the paper with
nondimensionalized units u∗ = u/V , r∗ = r/L, and t∗ = t/(L/V ) and for simplicity we drop the
asterisks.
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For typical values of both the motor speed V and the motor detachment rate Poff, there is a
wide spectrum of biological variation. On the one hand, load-carrying myosin motors in Chara
corallina can sustain fluid flows of speeds up to 100 μm/s over distances of a single cell that can
be up to 10 cm long [21,22], whereas inside an oocyte the flows can be as small as 0.1 μm/s
[15,69]. Thus, for an active particle with speed V = 0.1–100 μm/s and radius R = 0.1–1 μm,
in a microfluidic chamber of length L ∼ 100 μm, the Péclet number ranges from Pe ∼ 1 to 104.
On the other hand, the detachment rate Poff is related to the motor run length (also known as
the processivity), which in our simulation corresponds to λ = V/Poff, with Poff having units of
probability per time. For processive myosin motors, approximate run lengths can range between
λ = 100 and 1000 nm [61–64], which yields a detachment rate of Poff ∼ 1–10 s−1 (assuming a
speed of 1 μm/s). Engineered motors can reach processive run lengths approaching 10 μm [65],
with multimotor complexes expected to reach even higher run lengths.

The above description gives us a range of parameters that are relevant for a motor-actuated
system. For the entirety of the main text, unless otherwise mentioned, we set the length scales
of our system at L = 50 μm and V = 1 μm/s and we use an active particle size of radius R = 400
nm (see Sec. II and Table I in [57] for an extended discussion on parameter choices and relating
them to motor properties). To ensure convergence of our simulations, we use discretized time steps
of dt ≈ 10−6(L/V ). We report rates with respect to discrete time steps. For instance, a detachment
rate of Poff = 1 s−1 corresponds to Poff ∼ 10−4 per time step.

III. RESULTS

A. Optimal transport and flow topology

As a benchmark for us to compare our results in confinement, we first consider the simplest setup
without any surface defects and periodic boundary conditions in x and y. A single active surface lies
in the z = 0 plane with tracks aligned along x, and a glass slide sits with a no-slip condition at z = H .
In this case, the uniform flow profile is u = umax(z − H )x̂, where the maximum flow near the surface
is umax = 2〈u〉 in terms of the average streaming magnitude 〈u〉 := ∫

u(z)dz/H = φV/2 (Fig. S5
and movie S1 in [57]). This flow strength is directly determined by the motor speed V and the surface
coverage fraction φ, which is set by the motor processivity. Thus, if we use highly processive and
fast motors, the maximum flow speed near the surface can approach the motor speed itself, of order
umax ∼ 10–100 μm/s, for the fastest natural cytoskeletal motors [22]. The engineered processive
myosin motors [65] that are currently available are somewhat slower, up to V ∼ 10 μm/s, but still
capable of strong advection.

Next we consider a slightly more complex geometry: a closed rectangular chamber with one
uniform active surface, as before, but with five no-slip surfaces [see Figs. 2(e) and 2(f) and movie
S3 in [57]). The steady state on the boundary for one particular choice of parameters shows an
accumulation of particles at the right wall (at the plus end of the actin filaments) and a depletion
of particles on the left [Fig. 2(e)]. The fluid at the right boundary is forced upward, creating a
steady-state vortex in the xz plane [Fig. 2(f)]. Varying the Péclet number and detachment rates
shows that higher streaming magnitudes occur for lower values of Pe and an intermediate value
of Poff [Fig. 2(g) and Fig. S4 in [57]]. This optimum is explained as follows. On the one hand,
attached particles will tend to accumulate at the chamber edges within a timescale τw ∼ L/V . Overly
processive motors will therefore on average reach the opposite wall before they detach into the bulk,
reducing the streaming velocity away from the edges. This sets a lower bound on the detachment
probability, τdetach = 1/Poff � τw, so we require that Poff � V/L in order to establish nontrivial
streaming velocities in confined volumes. On the other hand, particles that are not processive
enough do not spend enough time on the surface to contribute significant momentum injection. A
large diffusion coefficient (i.e., small Péclet number) helps to offset particle accumulation at edges
and also homogenizes density fluctuations, which increases the streaming strength and stability,
allowing for the establishment of steady-state flow structures (movies S2 and S3 in [57]). This is
maximized in the limit Pe → 0, when diffusion dominates advection, and motors spread through
the box uniformly.
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In summary, the flow velocity can be optimized with a high diffusivity and an intermediate
processivity. Note that experimental realizations place constraints on these parameters, as discussed
in Sec. II in [57]. We further note that the properties of the phase space diagram are particular to the
geometry we have considered and other cases (such as periodic boundary conditions; see Fig. S5 in
[57]) may yield very different results. Moreover, uniform motion in confined chambers will lead to
recirculating streamlines that can transport particles in the ẑ direction, despite that activity on the
surface is directed uniquely along x̂ [Fig. 2(f)]. Recirculation of streamlines due to the presence of
defects in the surface is important when considering the design of fluid structures, which we do in
later sections.

B. Light-modulated surfaces

One way to engineer different fluid structures would be to manipulate the orientation of tracks
on a surface, an experimental perturbation made difficult by the fact that these tracks are often
permanent when laid out. Instead, advances in optogenetics have enabled a simpler means of
dynamic control via light. Engineered motors whose direction along an actin filament are switchable
by light provide a mechanism to reprogram the same surface by changing how the motors interact
with it [49]. We now explore this regime to see how we can program and pattern bulk flow with
variable surface light patterns.

Consider the same active surface as in Fig. 2(a) with all tracks oriented in the x̂ direction. Suppose
the x > 0.5 (right) half of the box is now illuminated, redirecting the optically controllable particles
in that region toward the minus end [Figs. 3(a) and 3(c)]. We term the resulting structure the head-on
defect, since now two populations of motile particles are walking into each other at a line defect
formed by the light pattern. This gives rise to two distinct vortices on either side of the domain
junction [Fig. 3(c)]. Similarly, we can also choose to illuminate the y > 0.5 half of the box, giving
rise to a shear defect configuration [Figs. 3(b) and 3(d)]. On a surface patterned with uniformly
oriented tracks, the head-on and shear defects are the two fundamental modes patterned by light.

These two flow structures have different properties that may be useful for different applications.
Suppose, for example, that at subsequent stages of a chemical process two particle transport
procedures are needed. Figures 3(e) and 3(f) show that the shear and head-on defects preferentially
transport tracer particles in different directions. The head-on defect is most effective at spreading
particles along the ẑ coordinate, as evidenced by the concentration profile of tracers initially in the
bottom half of the box being spread uniformly along ẑ by the end of the simulation [Fig. 3(e)]. On
the other hand, the shear defect is more effective at spreading along the ŷ coordinate [Fig. 3(f)].
Note that in both cases the direction of motion along the boundary is strictly in the x̂ direction; it
is the geometry of the confined chamber (i.e., the location of walls and defects) that gives rise to
recirculating streamlines.

A significant advantage of light-controlled surface patterning is the ease of transitioning from one
flow structure to another. As a proof of principle, we conducted a simulation (see movie S4 in [57])
where we transition from a shear defect to a head-on defect and back to a shear defect again, with
period 2 × 106 time steps, detachment rate Poff = 10−4 per time step, and Pe = 1 [the optimum in
Fig. 2(g)]. In our model, we assume that the behavior of the motile particles switches instantaneously
with the external light perturbation. Figures 3(g) and 3(h) show that with each transition, the flow
relaxes to its unique steady state for each boundary condition after a short relaxation time which is
set by Pe. Interestingly, the shear defect generates a slightly lower streaming velocity despite having
on average more particles attached to the boundary.

C. Systematic design of flow patterns in confined geometries

Next we consider the challenge of designing bulk flow patterns via surface activity and we
consider the breadth of design space that is available. To speed up our simulations, we continue
in the optimal limit Pe → 0 where active particles cover all surfaces uniformly and simulate
the steady-state flow structure in chambers of size Nx × Ny × Nz = 40 × 40 × 40. Hence, we no
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FIG. 3. Static and dynamic surface-patterned defects using light-controlled active colloidal particles in
confined volumes. (a) and (b) Schematic of a light pattern on the z = 0 surface of a chamber with dimensions
Nx × Ny × Nz = 20 × 20 × 10. In (a) the x > 0.5 half of the plane is illuminated by light and in (b) the y > 0.5
half is illuminated. (c) and (d) Resulting steady-state flow patterns. In (c) the line defect on the active surface
at x = 0.5 causes fluid to be pushed upward, creating two distinct vortices. In (d) the line defect along y = 0.5
creates vortices of opposite chirality in distinct regions of the chamber (y < 0.5 and y > 0.5). Confinement
of the fluid additionally gives rise to recirculating streamlines in the xy plane. (e) and (f) Head-on and shear
defects preferentially mix passively advecting particles (Petracer = 104) in different directions. Plotted on the
y axis is the fraction of tracer particles in the initially empty portion of the box as a function of time. Here
N> denotes the number of particles at x, y, z > 0.5, 0.5, 0.25 for each of the three curves, respectively. (e) For
the head-on defect, particles are nearly evenly distributed between the z < 0.25 and z > 0.25 halves of the
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longer simulate the particle dynamics explicitly and study the steady-state flow structures obtained
by patterning surfaces directly with constant slip velocities. In reality, when Pe is nonzero, the
magnitude of the flows will be more concentrated around defects (as shown in the previous section),
but the streamlines will be similar (Fig. S4 in [57]). Though these surface velocities can be patterned
arbitrarily, the resulting bulk flows must still obey the constraints set by the Stokes equations and
incompressibility. The question arises how the optogenetic design can be optimized to alleviate
those constraints in terms of transport and streamline connectivity.

For surface patterning, we utilize the language of defects that refer to zones where surface bound
active particles dramatically change behavior. Starting with a single active surface with uniformly
oriented filaments, different regions of left- or right-moving fluid can be created with light, as
depicted for the head-on, shear, and patch defects [Figs. 4(a i), 4(a ii), and 4(a iii), respectively].
Again, all three patterns are interchangeable by dynamically changing the pattern of light. We can
add an additional handle by no longer subjecting the filaments to be uniformly oriented. Alternating
orthogonal patches of tracks, in tandem with a light pattern on the surface, can give rise to flow
structures such as a vortex [Fig. 4(a iv)].

Integrated streamlines of the patch defect in Fig. 4(c i) highlights the separatrix formed by a small
region of oppositely moving flow. Streamlines shown in red traverse clockwise and are centered on
top of the patch, whereas all other streamlines travel counterclockwise. The head-on and patch
defects therefore have a compartmentalizing effect, with regions of streamlines that do not mix.
Conversely, Fig. 4(c ii) shows that the streamlines of the vortex defect traverse the xy plane as well
as a distance of over half the height of the grid in z. The shear and vortex defects are therefore
effective fluid mixers. These countervailing properties of compartmentalizing and mixing can guide
the design of numerous functions useful in self-driven microfluidics.

We can further build upon the complexity of our designs by patterning multiple surfaces at once.
Figure 4(b) approaches this systematically by considering only head-on [Figs. 4(b i), 4(b ii), and
4(b v) or shear defects [Figs. 4(b iii), 4(b iv), and 4(b vi)] on two or four surfaces. Interpreting the
resultant flow structures created by head-on defects is straightforward: Two stable vortices will form
on either side of a defect, where the flows move either toward (→←) or away (←→) from each
other. Integrated streamlines of the flow field of Fig. 4(b v) in Fig. 4(c iii) show that the streamlines
are two dimensional: Each of the eight vortex compartments remain unmixed in y. On the other hand,
patterning with shear defects can lead to mixing within each compartment. Figure 4(b vi) depicts
four consecutive active surfaces, with each pair of opposite faces patterned with shear defects of
opposite signs (↑↓ and ↓↑). In the xz plane, this gives rise to head-on defects at the four corners,
creating four stable vortices. However, recirculation in the yz and xy planes cause the streamlines
within the four vortices to traverse along the y coordinate, as depicted in Fig. 4(c iv).

The expectation that shear defects give rise to three-dimensional streamlines is a general but not
very robust rule however. If one were to flip the signs of the velocity patterned on the two walls with
surface normal to the x axis, the head-on defects at the corners would be eliminated, leading to a
continuous current that runs counterclockwise in the y < 0.5 region of the box and clockwise in the
other (Fig. S7 in [57]). Interestingly, the resulting streamlines are again coplanar.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIG. 3. (Continued) box, but mostly remain in the x < 0.5 and y < 0.5 regions, showing that there is little
mixing in x and y. (f) On the other hand, the shear defect is less effective at mixing in ẑ but is able to
mix particles along ŷ due to recirculation. (g) and (h) An optically controllable system allows easy temporal
switching from one flow structure to another. As a proof of principle, we switch between head-on and shear
defects, with period 2 × 106 time steps and parameters Poff = 10−4 and Pe = 1. (g) Distribution of motile
particles, where time moves from blue to green to red. (h) Shown in red is the average streaming magnitude,
computed as the spatially averaged fluid magnitude as a function of time, and in blue the average number of
particles attached to the boundary as a function of time. Interestingly, the average streaming magnitude of the
head-on defect is greater even though the number of attached particles on the boundary is slightly less than that
of the shear defect.
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FIG. 4. Design space of surface-driven flows using mainly head-on and shear defects. All flow structures
are solved on an Nx × Ny × Nz = 40 × 40 × 40 grid. (a) Each panel depicts a pattern of light on a single active
boundary (top) and the corresponding 3D flow structure (bottom). Note that (i)–(iii) are interchangeable by
light, whereas (iv) introduces additional complexity where the orientation of actin on the surface is no longer
fully uniform. (b) Panels (i), (ii), and (v) pattern two or four surfaces with head-on defects. Since the resulting
streamlines are effectively two dimensional, only xz cross sections of the flow structures are plotted. Panels
(iii), (iv), and (vi) consider the same but with shear defects and with the full 3D flow structure to highlight
the recirculating streamlines. (c) Select streamlines from (a) and (b) are plotted to enhance visualization of the
flow structures. Note the red streamlines in (i), which highlights the particles trapped in the clockwise vortex
established by the oppositely moving patch in Fig. 3(a iii). Contrasting (iii) with (iv) shows the effect of the
recirculating streamlines: Particles in the former remain advected in the xz plane whereas particles in the latter
circulate in xy.

Until now we have focused entirely on steady-state constant flows, harnessing only the spatial
programming of light. We want to highlight the fact that temporal patterning opens up an even
greater design space (movies S5 and S6 in [57]). Consider, for example, a continuous transition from
a head-on to shear defect by smoothly varying the angle of the light pattern with the y axis (movie
S5 in [57]). We can also assign an angular velocity to the light angle, generating a rotating light
field. Although at low Reynolds numbers the fluid will relax instantaneously to the new boundary
conditions, there is still a finite relaxation time associated with the redistribution of motile particles.
In addition, the path taken by tracer patterns in a nonconstant Stokes fluid is not obvious. Further
investigation into the effects and possible functionality of nonconstant flows is left for future work.

D. Interior squirmer model

Given the quickly increasing complexity of the resulting flows and the myriad possibilities of
surface patterns, it is clear that adopting a more analytical approach to understanding the design
space of boundary-driven flows is required. For this we turn to solutions of the squirmer model
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on a sphere [60,70–73]. Initially adopted to study the external flow fields of microswimmers, we
invert the problem and study instead the flow structure within the sphere [31–35,74], subject to the
condition that flows normal to the surface vanish on the boundary. The resulting general solution
for incompressible Stokes flow inside a sphere is given by

ur (r, θ, φ) =
∞∑

n=1

n∑
m=0

nrn−1Pm
n (cos θ )

(
1 − r2

R2

)

×(bmn cos mφ + b̃mn sin mφ),

(2)

uθ =
∞∑

n=1

n∑
m=0

rn+1 sin θ P̂m
n (cos θ )

(
n + 3

(n + 1)R2
− 1

r2

)

×(bmn cos mφ + b̃mn sin mφ)

+ mrn

sin θ
Pm

n (cos θ )(c̃mn cos mφ − cmn sin mφ),

(3)

uφ =
∞∑

n=1

n∑
m=0

mrn+1Pm
n (cos θ )

sin θ

(
1

r2
− (n + 3)

(n + 1)R2

)

×(b̃mn cos mφ − bmn sin mφ)

+rn sin θ P̂m
n (cos θ )(cmn cos mφ + c̃mn sin mφ),

(4)

where Pm
n (x) are the associated Legendre polynomials indexed by integers n and m, P̂m

n (x) =
∂xPm

n (x) is its derivative, and the radius of the sphere is R. For the sake of simplicity we set bmn = b̃mn

and cmn = c̃mn, which fixes the phase of φ while keeping the topology the same. The modes are thus
denoted by two variables bmn and cmn.

The first few axisymmetric modes are shown to match with the simulated flow structures on a
grid (Fig. 5). We observe that the b modes are aligned longitudinally across the sphere, whereas
the c modes run along lines of latitude and form closed streamlines. Cross sections of the box
and sphere reveal the similarities between the internal flow structures. The topological equivalence
between a sphere and a box dictates that these flow structures should be compatible. We do note,
however, that corner effects can give rise to eddies that are unique to the geometry of a box [75].
Most interestingly, the b20 and c20 modes have built-in defects analogous to topologies proposed
earlier: The former consists of a line of head-on defects at the equator, while the latter consists of
two oppositely rotating hemispheres, giving rise to a shear defect along the equator. The spherical
solutions therefore present a natural framework in which to embed the design space of surface-
driven flow structures.

Plots of higher-order modes and their streamlines [Fig. 6(a) and Figs. S8– S12 in [57]] show
that these general rules of thumb still apply: b modes give rise to patches of oppositely moving
flow on the surface, while c modes give rise to closed vortices. Higher-order modes give rise to
more patches or more vortices, corresponding to smaller compartments in which tracer particles can
traverse (Figs. S11 and S12 in [57]). The b modes are better at mixing particles radially within their
compartments due to streamlines that redirect particles toward the z = 0 axis, whereas particles
move along concentric closed curves at approximately constant radius in c modes (Figs. S8– S10 in
[57]). These properties can be combined and used when designing microfluidic devices that require
specific bulk flow patterns.

E. Chaotic mixing by mode superposition

Inspired by previous work showing that Stokes flows within droplets can give rise to chaotic
streamlines [76–79], we ask whether our surface-driven flow patterns can do the same. Whereas
the individual b and c modes do not feature chaos, we do find evidence of chaotic mixing in
superpositions of these modes (Fig. 6). To quantify this, we consider the trajectories of tracer particle
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FIG. 5. Fundamental modes of the squirmer model: an analytical approach to boundary-driven flows. (a)–
(d) Comparisons between theory (left) and simulations (right) for the first four axisymmetric modes. The green
± symbols at the corners of the box indicate the polarity of the actin filaments patterned on the boundary. The
top row of each panel depicts the surface patterning and the bottom row depicts the internal flow structures
taken at some cross section. (a) and (c) The surface patterns of the b10 and b20 modes lie on longitudinal tracks.
The b10 mode consists of uniform (in direction) motion from the north to the south pole, while the b20 mode
naturally encodes a line of head-on defects at the equator. All interior flow structures are taken at the cross
section y = 0. (b) and (d) Conversely, the surface patterns of the c10 and c20 modes lie on lines of latitude.
Similar to the b20 mode, the c20 mode naturally encodes a shear defect along its equator. The interior cross
sections of c10 for both the sphere and the box are taken at x = 0, while the pair of cross sections of c20 are
taken at θ = π/3, 3π/4 for the sphere and at z = 0.25, 0.75. Cross sections of the sphere and box in all four
panels show that the interior flow structures are analogous. This shows that the language of head-on and shear
defects is intrinsically built into the squirmer model.

pairs that are initially spaced a distance dr0 = 10−6 apart (in dimensionless units). Figure 6(b)
depicts ten such trajectories subject to the b21 flow field only. The blue circles denote the starting
positions of one pair of particles, which cannot be visually resolved. The green circles denote their
final positions after integrating to time t = 500. The red curve in Fig. 6(f) plots the separation dr
as a function of time, averaged over 1000 randomly seeded trajectories, and shows that the particle
pairs remain close together throughout their trajectories, with a final separation less than dr = 10−3.
Similarly, the blue curve in Fig. 6(f) suggests that the c21 mode is also not chaotic.

Trajectories of the b21 + c21 modes combined, however, will on average diverge rapidly to a
distance comparable to the system size (R = 1). Figure 6(c) depicts a single pair of trajectories
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FIG. 6. Emergence of chaotic mixing. (a) Surface streamline structure of the modes (i.e., the fluid velocity
at r/R = 1) plotted as a function of the spherical angles θ and φ. Note that the b modes give rise to patches
of oppositely moving flow, whereas the c modes comprise closed vortices. (b) Examples of ten separate
trajectories of the b21 mode. The blue circles denote the starting points of two particles, spaced dr/R = 10−6

apart, a distance that cannot be resolved by eye. The green circles denote the ending positions after integrating
for t = 500, which are still very closely spaced, showing that the two trajectories do not substantially diverge.
(c) Example of a single chaotic trajectory of the b21 + c21 mode. Note the positions of the green circles, which
now span a distance comparable to the size of the droplet. (d) Poincaré section at x = 0 for the b21 mode
computed from 1000 trajectories. Note that the plane is only sparsely populated. (e) The Poincaré section of
b21 + c21, on the other hand, nearly fills the entire plane. (f) Evolution in time of the logarithmic displacement
between pairs of particles initially spaced dr/R = 10−6 apart, averaged over 1000 randomly seeded trajectories.
These plots show that of the three modes in (a), only the superposed mode shows evidence of chaotic mixing
on the scale of the droplet size. (g) Exponents of the time evolution of dr after integrating for t = 500 for
various superpositions of modes, indicated by the row r and column c of the element in the matrix. For
example, (r, c) = (2, 3) denotes the c21 + b22 mode. The matrix shows that the only modes that show evidence
of chaotic mixing are the b and c superposed modes. However, not all such modes are chaotic, as evidenced by
the b21 + c22 mode.
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that begin at the blue circle near the center of the sphere. After a time t = 500, the green circles
show the separation of these two particles at a distance comparable to the sphere diameter. This
chaotic mixing is further illustrated by the Poincaré sections at x = 0 for the b21 and b21 + c21 modes
[Figs. 6(d) and 6(f)], each built from 1000 randomly seeded trajectories. The Poincaré section of
b21 is notably sparser than that of b21 + c21, showing that the superposition of modes is far more
effective at mixing.

To understand this better, we map out the entire phase space of mixing potential by superpositions
of the n = 2 modes [Fig. 6(g)]. This heat map shows the exponent of dr for each pair of superposed
modes. Only the modes consisting of b superposed onto c lead to chaotic advection, suggesting
that fundamental properties from each mode are necessary ingredients. Somewhat surprisingly, the
axisymmetric mode b20 showed moderate signs of mixing when superposed with the c21 and c22

modes, but the b21 + c22 mode combination did not. Though we can predict the flow structures of
simple surface patterns, it is not obvious which of the more complex topologies will lead to chaotic
mixing and which do not. Prior theoretical work has shown that fluid properties such as stretching,
twisting, and folding are essential for chaotic mixing [76,77,79–81].

Moreover, we have also examined the effect of Brownian motion on top of chaotic mixing (see
Fig. S13 in [57]). These results show that chaotic flows always significantly reduce the mixing time,
up to tens of times faster than nonchaotic flows and orders of magnitude faster than diffusion alone,
for sufficiently large chambers or sufficiently fast flows.

IV. DISCUSSION

In this paper we have proposed a class of flow patterns that utilize surface-driven flows rather
than externally applied pressure gradients in confined geometries. We first considered a realization
of such active boundaries using a suspension of light-controllable molecular motors. These particles
can bind to directional tracks grafted onto the surfaces of a microfluidic chamber, and hence generate
surface-driven flows. We demonstrated that these currents can be optimized by tuning the motor
processivity and the motor velocity. This nonequilibrium transport was augmented further by opto-
genetic perturbations, whereby the same active surface can be reprogrammed to generate a myriad
of different flow structures. We then generalized the problem of designing fluid structures by moving
from numerical to analytical analysis, embedding the language of our surface patterns in terms of
the squirmer modes. Different classes of topological defects created by light patterning give rise
to flow structures that each have different functions, such as hydrodynamic compartmentalization,
translation and rotation, and chaotic mixing.

Importantly, the concept of active boundaries is much more general than any specific im-
plementation. That is, besides molecular motors, surface-driven flow structures may equally be
driven by other microfluidic technologies, and fluid design concepts have been developed for these
systems as well [[15,21–23,25–39,41,42],[44]]. For example, artificial cilia [25–30] could also
be used to create a patterned active surface, but dynamic local control cannot be achieved since
the ciliary patterning cannot be moved once established, and miniaturization remains a challenge.
Phoretic pumps [31–35], where a surface is coated with fixed patches of chemical catalysts, also
suffer from a lack of dynamic control. Additionally, the chemicals used (typically H2O2) may
not be biocompatible or interfere with other desired laboratory-on-a-chip reactions. Induced-charge
electrokinetics is another important means of creating boundary-driven flows by applying an electric
field to an ionic solvent [82,83], which has proved to be effective in many microfluidic applications
including chaotic mixing. However, similar to the artificial cilia and phoretic pumps, the electrodes
are fixed in place, and the high voltages used can affect sensitive biochemistry near the electrodes.

Another key advantage of a microfluidic system driven by molecular motors is that the active
particles are coupled, rather than permanently attached, to the boundary. A region of the boundary
will not be active unless a motor binds to it. Thus, the activity at a local patch of the boundary is
dependent on the local concentration centered on that patch. Therefore, the energy consumption
can be localized to a region of the surface by concentrating particles (i.e., with a head-on defect)
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and thus concentrating activity. Moreover, while we focused on controlling active particles in one
direction, multiple channels can be combined to enable full orthogonal control of the active carpet.
For example, myosin motors tuned by one wavelength of light can generate surface flows via actin
tracks along the x direction, while kinesins tuned by a different wavelength of light can walk on
microtubules grafted along y.

The generality of the concept of surface-driven flows led us to develop an analytic theory that
reveals the possible flow structures in terms of fundamental modes, which may be superposed spa-
tiotemporally. Switching dynamically from one mode to another enables the generation of multiple
flow structures from a single active surface, without the need for physical channel fabrication. The
simplicity of such a microfluidic design platform is the minimal amount of experimental manipula-
tion required during operation. Hence, highly complex and dynamic time-varying protocols may be
designed with these internally driven flows. It would be very interesting in the future to ask whether
or not these units can be used to create logic gates [13,84], microfluidic assembly lines [47], or
for other applications such as sorting particles of difference sizes [85]. Instead of spherical active
particles that move along the surface, one could also consider active filaments [86,87]. Overall, this
platform provides a fertile testing ground for understanding and designing active carpets from first
principles.
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