The syntax-to-semantics mapping in real-time language production: A view from psych verbs

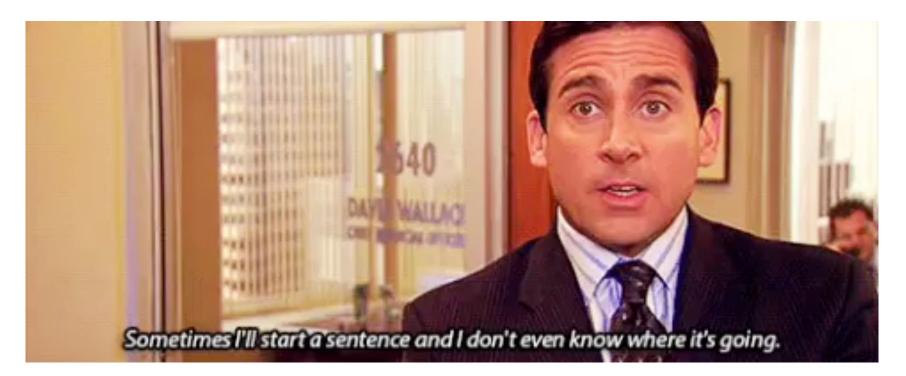
Monica L. Do (monicado@sas.upenn.edu)

Elsi Kaiser (emkaiser@usc.edu)

LSA 2019

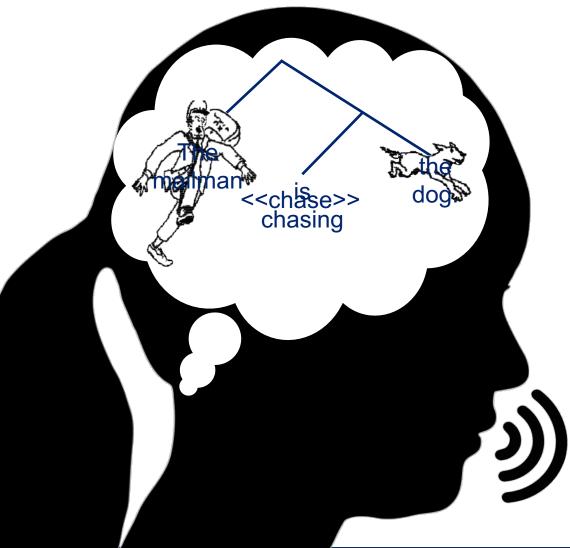
January 6, 2019

Thanks to:


Ana Besserman (USC)

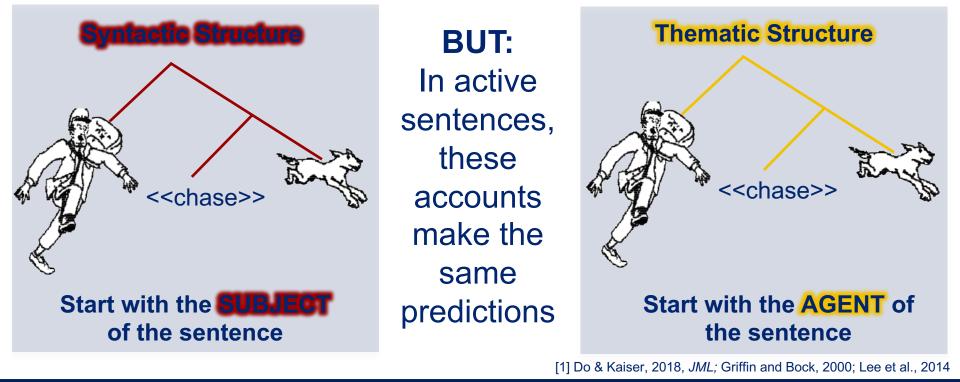
USC Russell Endowed Fellowship

How does production work?


• **Production is Incremental:** Only some parts of our sentences are planned before speaking. The rest is planned on the fly!!^[1]

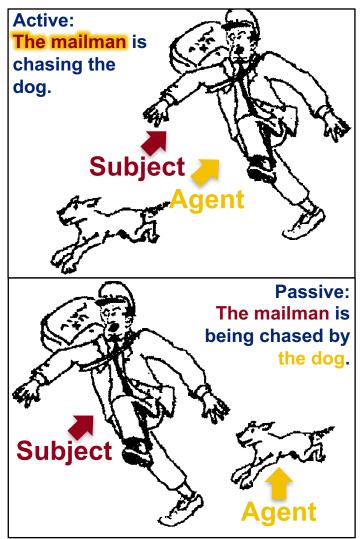
[1] Levelt, 1989

How does production work?


Production is Multi-Stage:^[1]

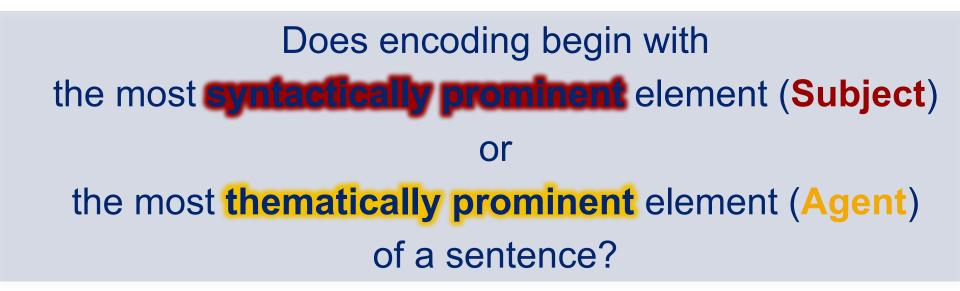
Pennsylvania

[1] Levelt, 1989


How does linguistic encoding work?

- Encoding is hierarchical: We do not encode our messages simply following the linear word order of the sentence^[1]
- What kind of hierarchical structure do we use to linguistically encode our sentences?

One Potential Solution: Passives



- Griffin and Bock, 2000: Passives separate syntactic from thematic hierarchy
 - See-and-describe
 - Visual world eye-tracking
- Subjecthood is privileged:
 - Participants look to subject first, even if it's not the agent.
- BUT, other factors may 'boost' subjecthood effect
 - Subjects always human^[1]
 - Unclear when agent of optional byphrases planned^[2]

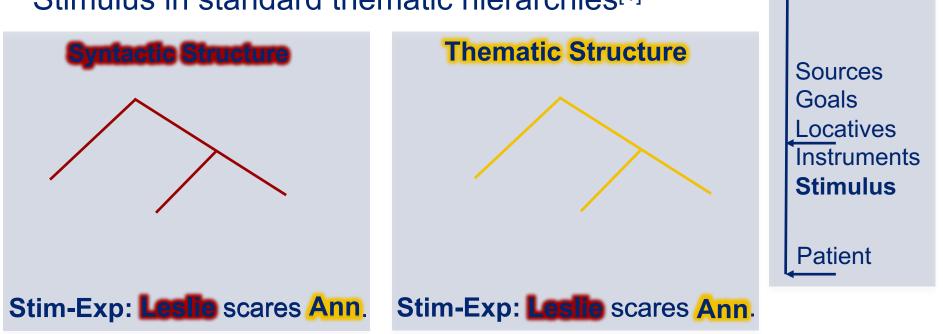
The Question

What kind of hierarchical structure do we use to linguistically encode our sentences?

Our Solution: Pysch(ological State) Verbs

Experiencer -Stimulus

- Loves
- Hates
- Fears
- Adores


Stimulus-Experiencer

- Amazes
- Scares
- Frustrates
- Confuses

Our Solution: Psych(ological State) Verbs

- Syntactically, the same surface form
 Exp-Stim: Leslie loves Ann.
 Stim-Exp: Leslie scares Ann.
- Thematically, Experiencers more prominent than Stimulus in standard thematic hierarchies^[1]

[1] Grimshaw, 1980; Jackendoff, 1987; Belletti & Rizzi, 1988

Thematic

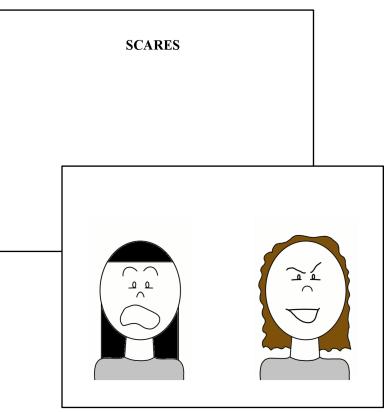
Hierarchy

Experiencer

Agent

Why Psych(ological State) Verbs?

- These verbs are rarely investigated experimentally: We want to extend prior psycholinguistic work beyond the Agt-Pat structure
- 2. They provide a different way to tap into how linguistic encoding unfolds: We want a minimal contrast that teases apart the most syntactically prominent element (Subject) from the most thematically prominent element (Experiencer) of a sentence.



Psych Verbs: Methods & Design

'See-and-Describe':

- 1. Trained on names of characters
- 2. See a verb prompt
- 3. See a critical image
- 4. Participants (n=34) **produce** sentence about the image using verb
- 3 Verb Types * 8 trials each
 - Experiencer-Stimulus: e.g. loves
 - Stimulus-Experiencer: e.g. scares
 - Agent-Patient: e.g. confronts
- We analyzed (i) speech onset times, and (ii) eye-movements to subject during encoding (400-1000ms after image)
- 3 post-experiment questionnaires: Image clarity, Visual salience, Autism Spectrum Quotient

"Leslie scares Ann."

Hypotheses & Predictions

Does encoding begin with the most syntactically prominent or thematically prominent element?					
	Agt-Pat Leslie confronts Ann.	Exp-Stim Leslie fears Ann.	Stim-Exp Leslie scares Ann.		
Syntactic: Subject					
Thematic: Agt/Exp					
Multi- Factorial Both things important					

Psych Verbs: Speech Onset Times

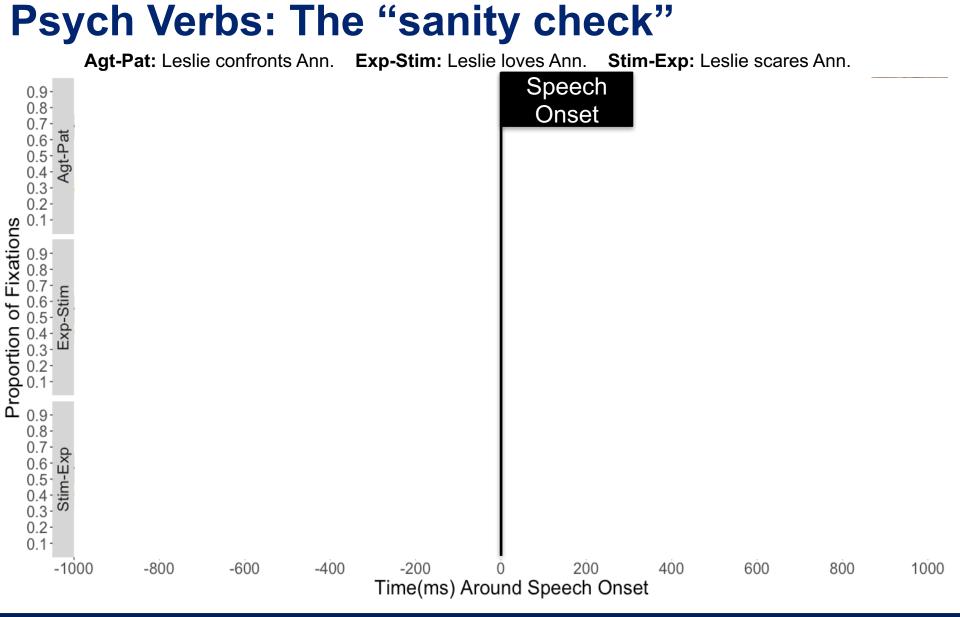
at
۲
Ŀ
G
\triangleleft

Verb Type Exp-Stim

0

500

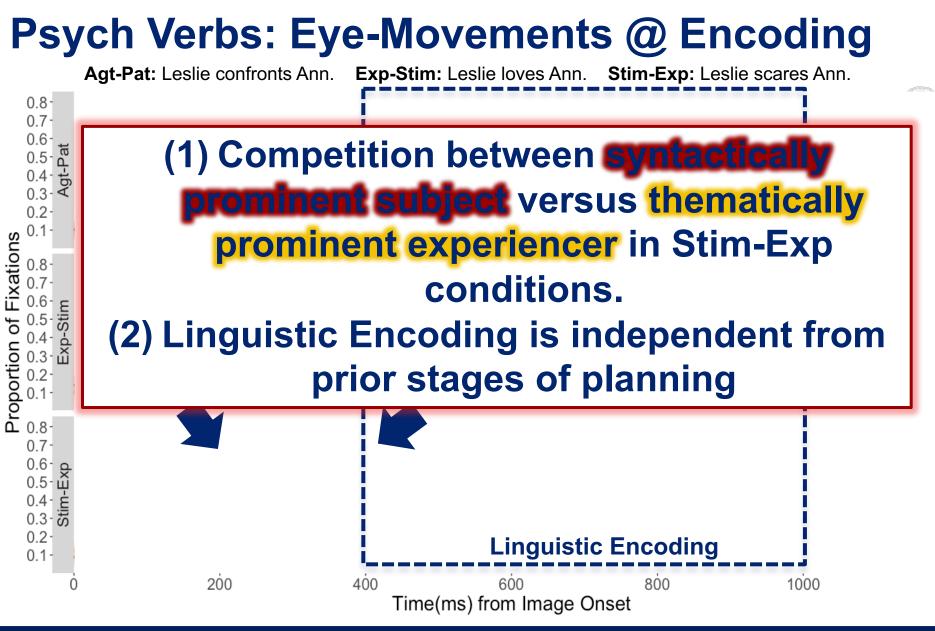
1000 1500 Speech Onset Time (ms) 2000


Psych Verbs: Eye-movements

- 1. Patterns before and after SPEECH ONSET
 - Not theoretically relevant to hypotheses about linguistic encoding, which happens well-before speaking
 - Just checking: Do eye-movements make sense based on prior work?

2. Patterns immediately after IMAGE APPEARS

This tells us about how linguistic encoding unfolds


Psych Verbs: Eye-movements

- 1. Patterns before and after SPEECH ONSET
 - Not theoretically relevant to hypotheses about linguistic encoding, which happens well-before speaking
 - Just checking: Do eye-movements make sense based on prior work?

2. Patterns immediately after IMAGE APPEARS

This tells us about how linguistic encoding unfolds

Hypotheses & Predictions

Does encoding begin with the most syntactically				
prominent or thematically prominent element?				

	Agt-Pat	Exp-Stim	Stim-Exp
	<mark>Leslie</mark> confronts Ann.	Leslie fears Ann.	Leslie scares Ann.
Syntactic:	Subject	Subject	Subject
Subject	Leslie	Leslie	Leslie
Thematic:	Subject	Subject	Object
Agt/Exp	Leslie	Leslie	Ann
Multi- Factorial Both things important	Subject _{Leslie}	Subject Leslie	Both things have to align!

Psych Verbs: What did we find?

- 1. Psych verbs, as a class, are not categorically more difficult to plan for production than Agent-Patient verbs.
 - Exp-Stim and Stim-Exp do not show the same data patterns
- **2. Linguistic encoding is driven by <u>alignment</u> of syntactic to thematic prominence not by syntax alone**
 - Slower speech onsets & prolonged competition between looks to subject & object in Stim-Exp conditions
- 3. Message Conceptualization and Linguistic Encoding are separate processes in production
 - Eye-movements before during message conceptualization did not predict movements during encoding

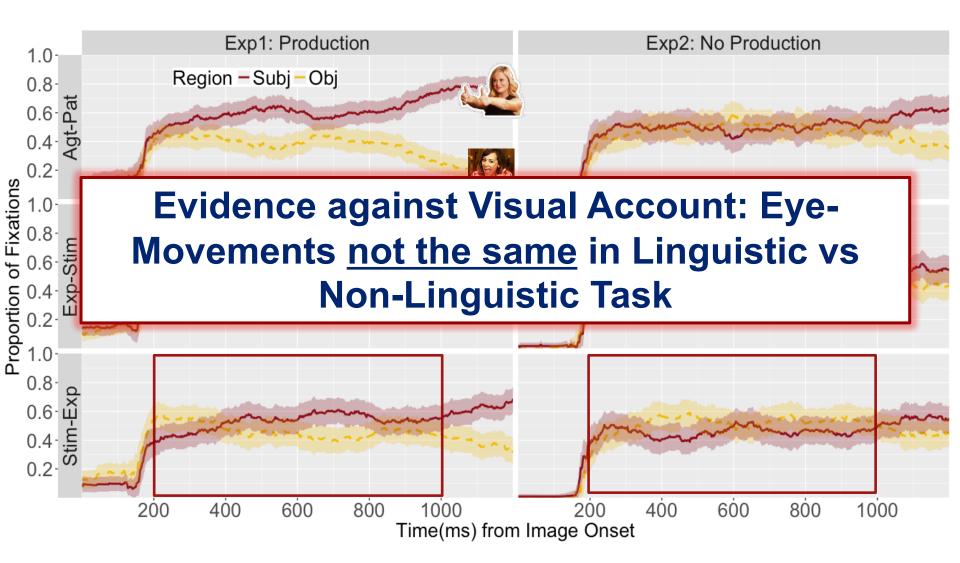
But how much of our effects were visually driven?

Experiment 2: Are results in Experiment 1 visually driven (rather than linguistic)?

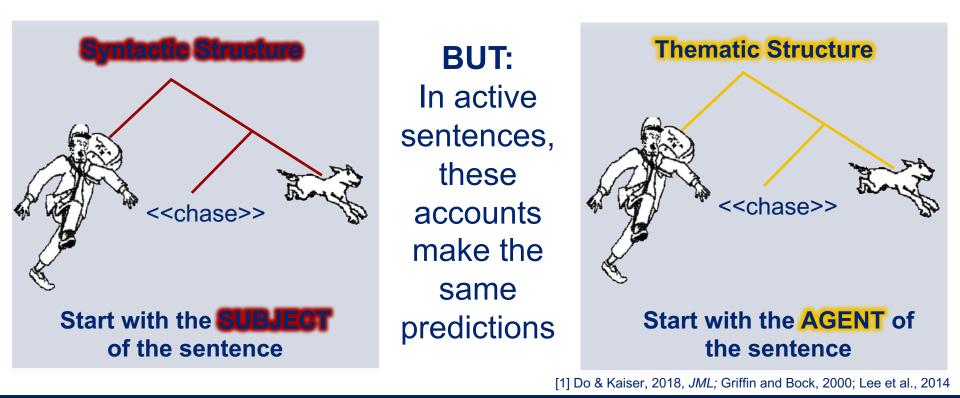
- Goal: Make sure that results for Stim-Exp verbs in Exp 1 due to misalignment between syntactic and thematic prominence, not
 - Interpretability (codeability) of images, and/or
 - Wonkiness of some facial expressions
- **Prediction:** If Exp1 results were visually driven, early eye-movements when there is **no linguistic task** should be the same as when preparing to produce a sentence



Exp2. Non-Linguistic Task: Methods & Design



- 1. Fixation Cross
- 2. Participants (n=18) inspected images for sense of 'quality' and 'content'
- 3. No sentence production
- Same images as Exp1
 - To ensure participants attend to images, randomly interspersed rating task
- Across verb types, measured:
 - Proportion of looks to subject
- 2 post-experiment questionnaires:
 - 1. Visual Salience
 - 2. Autism Spectrum Quotient


Picture Inspection: Eye-Movements in Exp2

How does linguistic encoding work?

 What kind of hierarchical structure do we use to linguistically encode our sentences?

How does linguistic encoding work?

- What kind of hierarchical structure do we use to linguistically encode our sentences?
 - Exp1: <u>Alignment</u> of syntactic-to-thematic structures (not just one structure) matters: When these hierarchies are not aligned, linguistic encoding is delayed.
 - Only Stim-Exp (mismatched) verbs showed slower speech onset
 - Only Stim-Exp (mismatched) verbs showed slower preferential fixations to subj/obj
 - Exp2: Results are linguistically, not visually, driven
 - Different pattern of eye-movements when people planning for speech vs when they are just looking at images

Current/Future Directions

- 1. Thematic Hierarchies: What does it mean to be the most prominent element of an 'event'?
 - **Experiencer-Stimulus Relationship:** In the right contexts, can the Stimulus be *more* prominent than the Experiencer?
 - Source-Goal Asymmetries: Other work has shown a massive goalbias in language.^[1]

The butterfly flew <u>from</u> the chair <u>to</u> the lamppost.

In the right contexts, can sources be more prominent than goals?

- 2. What are the psychological underpinnings of the Thematic Hierarchy?
 - Are linguistic asymmetries homologous to those in non-linguistic cognition?
 - Perception^[2], Attention^[3]

[1] Lakusta & Landau, 2005, 2012; Papafragou, 2010 [2] Hafri et al., 2013, 2018 [3] Do, Papafragou, Trueswell, & Robinson, in prep

References

- Bock, J. K., and Warren, R. K. (1985). Conceptual accessibility and syntactic structure in sentence formulation. *Cognition* 21, 47–67. Clark, H. H. and Begun, J. S. (1971). The Semantics of Sentence Subjects. *Language and Speech* 14(1), 34-46.
- Do, M. L. and Kaiser, E. M. (2018). Subjecthood and linear order in linguistic encoding: Evidence from the real-time production of whquestions in English and Mandarin Chinese. *Journal of Memory and Language* 105, 60-75.
- Do, M. L., A. Papafragou, A., Trueswell, J. C., and Robinson, N. (In prep). Discourse Effects on the Source-Goal Asymmetry.
- Griffin, Z. M., and Bock, K. (2000). What the eyes say about speaking. Psychological Science 11, 274-279.
- Grimshaw, J. (1990). Argument structure. Cambridge, MA: the MIT Press.
- Hafri, A., Papafragou, A., & Trueswell, J. C. (2013). Getting the gist of events: Recognition of two-participant actions from brief displays. *Journal of Experiment Psychology: General* 142(3), 880–905.
- Hafri, A., Trueswell, J. C., Strickland, B. (2018). Encoding of event roles from visual scenes is rapid, spontaneous, and interacts with higher-level visual processing. *Cognition* 175, 36-52.
- Jackendoff, R. S. (1972). Semantic interpretation in generative grammar. Cambridge, MA: MIT Press.
- Jackendoff, R. S. (1987). The status of thematic relations in linguistic theory. *Linguistic Inquiry* 18(3), 369-411.
- Lakusta, L., & Landau, B. (2005). Starting at the end: The importance of goals in spatial language. *Cognition* 96, 1–33.
- Lakusta, L., & Landau, B. (2012). Language and Memory for Motion Events: Origins of the Asymmetry Between Source and Goal Paths. *Cognitive Science* 36, 517–544.
- Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.
- Papafragou, A. (2010). Source-goal asymmetries in motion representation: Implications for language production and comprehension. *Cognitive Science* 34, 1064–1092.
- Thompson, C. K., and Lee, M. (2009). Psych verb production and comprehension in agrammatic Broca's aphasia. *Journal of Neurolinguistics* 22, 354–369.

Thank you!! 🐸

Monica L. Do (monicado@sas.upenn.edu) & Elsi Kaiser (emkaiser@usc.edu)

