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Abstract 

When cooled beyond their melting point, materials enter the super-cooled fluid regime. The 

long-time fate of the super-cooled fluid could be either a crystalline stable state or an amorphous 

state known as glass. The nature of the glass transition, occurring at the deeply super-cooled 

fluid regime, remains one of the open questions in condensed matter physics. It cannot be 

explored directly in experiment or simulation, since the system relaxation time is expected to 

diverge at the transition point. 

 

In an attempt to study the characteristics of the deeply super-cooled fluid regime, we suggest 

studying a relatively simple lattice fluid, the N3 extended exclusion zone model. This system, 

devoid of long range interactions, is known to jam in amorphous states at high densities. To 

facilitate this effort, the implemented simulation scheme is isothermal-isobaric (constant 

pressure). Such a scheme is chosen since constant volume approaches are known to be less stable 

in the super-cooled regime.  

 

The implementation of constant pressure simulators of lattice fluids involves some difficulty, as 

the volume difference between two sampled configurations must not be too large. We implement 

the model in constant pressure settings using two distinct approaches, one following Pendzig et 

al, the other due to Nies and Cifra. The first approach is found to be inadequate for large 

systems, while the second fares somewhat better. Super-cooled liquid samples are obtained in a 

pressure range unavailable before. However, the most deeply super-cooled samples we obtained 

are still far apart from the expected ideal glass transition point. 

 

The super-cooled fluid regime is explored where samples are available. No signs of impending 

glass transition are found in measures such as the dynamical correlation functions. The 

crystallization processes (nucleation and nucleus growth) which limit us from obtaining deeply 

super-cooled samples are also studied. Both homogeneous and heterogeneous processes play a 

significant role in the formation of solid clusters. The clusters are found to be ramified in nature, 

an observation that could lead to deviations from classical nucleation theory. 
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Introduction 

A liquid sample, cooled at a finite rate below its melting point, may avoid crystallization and 

remain liquid for significant times. This well-known type of process creates a super-cooled 

liquid, a metastable state whose existence is typically limited by nucleation and growth of small 

solid grains
[1]

. In some cases, fast enough cooling may lead the system beyond the glass 

transition to a stable non-solid configuration that cannot crystallize on any time-scale
 [2]

. The 

resulting sample is generally locked in a state characterized by very slow dynamics and long 

relaxation times. When the relaxation time surpasses some conventional limit, we say that the 

sample went through a dynamic glass transition
[3-6]

. Further cooling of the sample would not 

facilitate equilibration to the crystalline state. Although a lot of progress has been made in the 

description of the deeply super-cooled state and dynamic glass transition, much is still poorly 

understood. The transition itself is regarded by some as a pure convention, having nothing to do 

with physics, but with our inability of setting up very long experiments
[5]

. Keeping this view in 

mind, many questions arise about a possible termination of the super-cooled state. In particular, a 

paradox raised by Kauzmann
[7]

: based on extrapolation of the super-cooled fluid heat capacity, it 

seems that at low enough temperatures the entropy of the (metastable) super-cooled state 

becomes lower than that of the (stable) solid. If such a phenomenon can be measured, it would 

imply the breaking of the third law of thermodynamics, as the liquid entropy cannot be smaller 

than the vibrational entropy of the glass at the same enthalpy
[8]

. Possible resolutions to the 

paradox include the introduction of a phase transition of the super-cooled fluid to a new phase at 

low enough temperatures, possibly the ideal glass
[9-11]

. Kauzmann himself has suggested that the 

supercooling phase is terminated by nucleation processes becoming faster than the fluid 

relaxation times. The point at which this transition occurs is known as the kinetic spinodal
[7,12-13]

.  

 

A true ideal glass transition, whether it exists or not, is thought to occur at experimentally 

inaccessible times (tending to infinity, due to the exponentially growing relaxation times). 

However, signatures of such a transition may appear at less deeply super-cooled samples, 

allowing exploration by experiment or numerical simulation. Both approaches have their own 

merits: experimental evidence is the only true proof of any theory in the scientific method. 

Furthermore, experiments allow exploration of quite long time scales, on the order of minutes, 
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hours or days. Their down side are our measurement limitations, in particular our inability to 

directly locate and track unique particles and structures. On the other hand, numerical 

simulations grant us broad freedom in measuring any observable. Unfortunately, as it is always 

dependent on theoretical modeling, simulation may digress from reality at important points. 

Moreover, current computation technologies place severe limitations on accessible simulation 

timescales
[5,14]

. These computational limitations become more severe as the microstructure of the 

sample and the interactions become more complex. Much effort has been exerted on both 

approaches, but both are far from being exhausted. In this work we present an attempt to 

simulate a simple system thought to exhibit glass-like behavior, a crucial quality in the search for 

deeply super-cooled state characteristics. 

 

The quest for a suitable model for computer simulation of glassy behavior is guided by two 

principles. First, the model must be sufficiently simple to allow an efficient computation, thus 

providing access to longer time scales characteristic of glasses. Second, it should exhibit 

“jamming”
[15]

, often related to geometrical complexity, leading to a dynamical arrest where there 

is no relaxation between different microscopic states of the system. Jamming is desirable, as it is 

expected to impede solid nucleation and growth, contributing to the stability of the super-cooled 

metastable state. Thus, the model must be simple for computational efficiency, but “complex” 

enough to have the quality of jamming. Rigid body systems constitute good candidates for such 

models, as they lack long range two particle interactions that complicate the dynamics. Another 

important element that separates rigid body models from more realistic liquids is the phase 

control parameter. Supercooling is usually thought of as a process involving temperature 

variations, hence the name. The same effect may be obtained at constant temperature, with 

variation of the density or pressure of the system
[16]

. Rigid body models usually utilize these 

parameters to control the system state instead of the temperature. The family of continuous hard 

sphere models in varying dimensionality has been a popular subject of numerical simulations. 

The important limiting characteristics of these systems have been resolved analytically, and 

different numerical protocols exist for preparing hard sphere samples in high density amorphous 

states. The hard sphere model is not very effective at creating arrested configurations, as 

simulations indicate that crystallization and dynamic relaxation take place on similar 

timescales
[17]

, suggesting that the entropic barriers limiting solid nucleation are not sufficiently 



9 
 

high. As a result, numerical study of anything resembling a super-cooled state is done using 

theoretical scaffolding, e.g. the replica method
[17]

. A more direct approach to thermodynamic 

sampling of the super-cooled state may be obtained by a different family of rigid body models. 

 

Lattice gas methods (LGMs)
[18]

, also known as cellular automata, are a group of models utilizing 

discrete boolean grids to represent particulate systems. A grid site in a LGM may either be 

occupied by a particle or left void.  Initially these models, introduced by Von Neumann and 

Ulam
[19]

, were helpful to avoid detailed descriptions of small scale physics and also round-off 

errors typical of molecular dynamic simulations of continuous hydrodynamic systems. LGMs are 

studied using either molecular dynamics or lattice Monte Carlo simulations, where statistical 

mechanics replaces particle dynamics as the system motive force. The boolean nature of LGMs 

makes them a natural choice for implementing discrete rigid body models, the most trivial of 

which is the non-interacting lattice gas (NILG). In this model there is actually no repulsive 

interaction, and no other interaction whatsoever except for the no-double-occupancy rule. This 

simple model can be solved analytically
[20]

. More complex models introduce finite sized 

exclusion zones surrounding the particles. These models are conveniently named by the order of 

excluded neighbors: a model where the nearest neighboring grid site is excluded is named N1, the 

second nearest N2, and so on. Letting the number of excluded neighbors grow to infinity, while 

reducing the grid cell size to zero as to retain a constant exclusion zone volume, we reach the 

limit of the continuous hard sphere model. Such finite range interaction models have attracted 

attention for a long time
[23]

, as melting of a solid sample seems to be dominated by short range 

repulsive forces. Rigid body extended exclusion zone models have been extensively studied on 

several geometries and dimensionalities (e.g. triangular lattices
[21-22]

, simple cubic
[24]

 etc.). The 

most popular subjects are the 2D square lattice models, N1 being the model explored the longest 

and in the most throughout manner
[23]

. It is known to have a continuous Ising-like phase 

transition between an ordered and disordered state. This phase transition occurs on various 2D 

and 3D lattices. The next model in terms of exclusion radius is N2, with exclusion extending to 

second nearest neighboring cells, also a well-studied model
[24]

. As opposed to N1, it exhibits an 

important dependence on dimensionality. 2D N2 has a continuous phase transition from a 

disordered to columnar phase: it is ordered in one direction but disordered on the orthogonal 

direction. In 3D however, N2 exhibits a weak first order phase transition
[25]

. From here on we 
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shall concentrate on 2D models, as they are more straightforward to implement, and as 

mentioned earlier, simplicity is one of our guides to a suitable simulated model. As we are 

looking for a model to simulate super-cooled liquids, we are pressed to keep searching for a 

model which exhibits a clear first order phase transition. The simplest such model in the family 

of extended rigid body potential LGMs is the N3 model.
 

 

As hinted by its name, N3 is characterized by exclusion zones spanning the first, second, and 

third nearest neighboring grid cells. Compared to lower order models discussed before, N3 

attracted less attention. It is the simplest model in the family exhibiting a first order transition on 

a 2D square lattice. The first to explore this model were Bellemans, Nigam and Orban
[26-27]

. 

Heilmann and Praestgaard have shown that the N3 exclusion zone is equivalent on the square 

grid to cross shaped pentamers
[28]

, and theoretically proved the existence of a phase transition. 

Nisbet and Farquhar
[29-30]

 used transfer matrix methods to support the existence of a first order 

phase transition in the square lattice N3, while Orban and Van Belle
[31]

 based their similar 

findings on series expansions. Eisenberg and Baram
[32-33]

 later refined the application of R-

matrix methods to accurately resolve the phase transition conditions of the model, and utilized 

random sequential adsorption-diffusion (RSAD) protocols to measure the random closest 

packing density of the system. Their research also indicated that a metastable super-cooled phase 

might exist in the N3 model. Lately, Rotman and Eisenberg
[34-35]

, conclusively verified R-matrix 

predictions with grand canonical Monte Carlo simulations, provided evidence for super-cooled-

like behavior of dynamical correlation functions, and reported a dynamic glass transition at the 

predicted density. Oliveira et al.
 [36]

 have shown in simulations that an infinitely fast cooling of 

the N3 system results in an amorphous state with a finite density of vacancies, or void grid cells. 
 

This body of research, and especially the latest works carried out since the beginning of the 

2000’s, provides encouraging data on the possibility of directly measuring deeply super-cooled 

states in the N3 model on a square lattice. This relatively simple model exhibits first order phase 

transition, similar to physical liquid-solid transitions. Furthermore, rapid “cooling”, simulated 

through RSAD protocols results in a well-defined dynamic glass transitions, accompanied by 

growing dynamic correlations. Finally, the “geometrically complex” nature of the model, 

necessary to dynamically arresting microscopic elements, is expected to impede solid nucleation 

and growth, possibly allowing super-cooled metastable states to exist for long times.  
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To this date a direct thermodynamical measurement of a super-cooled state in the N3 model has 

been carried out only in constant volume settings. In such settings the equilibrium configurations 

for densities above the melting transition is a phase separated state, in which the system breaks 

up into two distinct phases, liquid and solid. Tracking this phase separation throughout the 

simulation is not trivial, and thus it is hard to determine whether the system is truly out of 

equilibrium and in the meta-stable glassy state. Another disadvantage of the constant-volume 

simulation is that they do not allow for an easy access to the compressibility (related to density 

fluctuations). There are some predictions suggesting that the compressibility might show signs of 

the nearing glass transition, and thus it is desirable to have this quantity accessible. 

 

Another motivation for considering isobaric simulations is the hypothesis that in constant volume 

simulations relaxation to the phase separated state might be slower due to the following reason: 

any solid grain that happens to nucleate automatically leaves behind a lower density region 

where liquid constituent particles can flow and expand their volume. In the super-cooled phase, 

relaxation times depends very strongly on the density, thus the lowered density could result in an 

accelerated relaxation. As solid grains, or clusters, have more room around them, they can grow 

until stopped by mismatching surfaces of other clusters. The regions between mismatching 

clusters will stay at low density, hosting a liquid phase. A possible way of circumventing this 

process is to simulate the system in constant pressure and varying density.  

 

Though rather well established in continuous systems
[37-39]

, constant pressure Monte Carlo 

simulations for lattice fluids are a relatively new endeavor, carried out mainly in the field of 

chemistry of chain molecules and polymers
[20,40-42]

. The typical plague of discrete constant 

pressure Monte Carlo is the statistical inaccessibility of configurations with “large” super-

microscopic volume variations. The discrete nature of LGMs requires unique implementation 

methods to avoid sampling large volume variations in the system. In this work we shall construct 

a constant pressure LGM, the N3 extended exclusion zone model on a square grid, using two 

different approaches
[20,42]

, in the intention of analyzing the super-cooled state in this model, and 

finding clues shedding light on the elusive thermodynamic ideal glass transition. 
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1. Isobaric Simulation of the N3 Model 

The system used in our study is called the N3 model. This simple model incorporates a lattice, 

where each particle creates an exclusion zone which spreads up to its third nearest neighbor. The 

interactions between the particles are of “rigid body” type, and no long range interactions exist in 

the system beyond the exclusion zone. We wish to explore a two-dimensional representation of 

this system, on a square grid. The lattice and exclusion zone are depicted in the following figure: 

   6    

 5 4 3 4 5  

 4 2 1 2 4  

6 3 1 O 1 3 6 

 4 2 1 2 4  

 5 4 3 4 5  

   6    

FIG 1 – The N3 model. Particle location is indicated by “O”. Digits indicate the enumeration of O’s nearest 

neighbors. The darkened area represents the exclusion zone. 

 

An alternative description of our particles is that of rigid cross-shaped pentamers
[28]

, where even 

partial overlap of the particles is not allowed.  This representation is shown in the following 

figure: 

 

       

       

       

   O    

       

       

       

FIG 2 – The N3 model cross-shape representation. Particle location is indicated by “O”, and it occupies the area 

painted dark-red. Light red area represents the exclusion zone. 
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A defining feature of this model is the occurrence of amorphous jammed states. The geometric 

constraints of the particles allow them to be arranged in a periodic lattice structure, covering the 

entire given volume. These are the equilibrium configurations at high densities. However, high 

density N3 systems may jam in amorphous states, leaving voids in between
[36]

. This feature lies 

in the core of the idea of utilizing the N3 system as a simple model for glassy materials. Glasses 

may be metastable states relative to the crystal structure, but geometric and/or dynamical arrest 

mechanisms prevent them from decaying into the stable crystal state. 

 

The two-dimensional N3 system (on a square grid) has been surveyed in the past in analytical 

studies and numerical simulations. In low densities it behaves like an ideal gas with constant 

proportion of pressure to density. Higher density configurations see the pressure rises more 

rapidly, until a first order phase transition between a fluid and solid occurs at a density of 

        [33]
, corresponding to a pressure of        . The solid density just beyond the 

phase transition is also resolved to be         . When cooled infinitely fast, using the 

Random Sequential Adsorption Diffusion (RSAD) procedure 
[32]

, the system jams in an 

amorphous glass-like state called the Random Closest Packing (RCP). In this state the density 

approaches a constant value of            . We are interested in understanding the behavior 

of the system within the super-cooled (metastable) regime, at pressures above the phase 

transition pressure. It is important to emphasize that the stable state of the system in these 

densities is not fluid, but a phase separated state with fluid and solid parts. These configurations 

(whether super-cooled or phase separated) have a higher density than   , but much lower than 

  . Using R-Matrix theory
[34]

, a super-cooled fluid branch is shown to exist up to a termination 

density          , close to the random closest packing density. This density was therefore 

predicted to be the location of an ideal glass transition, or a kinetic spinodal
[34]

. The expected 

pressure for the ideal glass transition was estimated to be        . 

 

Previous numerical studies of the system used canonical or grand-canonical ensembles. As such, 

the volume of the system was constant in these studies. This work attempts to tackle the N3 

system from a different angle, by implementing an isothermal-isobaric (constant NPT) simulator 

of the system. The main advantage of such an approach is the possibility of detecting super-

cooled states more easily. Furthermore the system may eventually leave a jammed state at long 
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times and crystallize, as opposed to the more subtle relaxation of the constant volume 

simulations into a phase separated state. Implementing an isothermal-isobaric simulator 

incorporates developing a technique to manage a system of variable volume, a nontrivial task 

when dealing with lattice fluids. 

 

The main difficulty with variable volume Monte-Carlo simulations of lattice fluids is related to 

the need to sample states with different volumes. In general, the energy (Hamiltonian) of the 

system can be expressed as: 

(1)             

 

In our model,        remains constant, and the difference between the energies of two 

configurations depend only on   . The Metropolis criterion
[43]

, defined in terms of the exponent 

of the difference between the energies of  two configurations, then depends on the volume 

difference. In continuous systems, a sampled configuration may have a volume only slightly 

different than the reference configuration. This in turn allows the acceptance of new 

configurations with slightly higher volumes, enabling the system to effectively survey the phase 

space. Lattice fluid systems are however of a different breed, as the volume of such models is 

quantized. Therefore, the smallest variation is proportional to the surface area of the system, i.e. 

              , with   the dimensionality (as seen in FIG 3). Although this minimal variation 

is sub-extensive, it grows with the system size. Once the energy difference associated with this 

minimal change is much greater than    , the new configuration has a negligible probability to 

fulfill the Metropolis criterion, and is discarded, preventing an effective sampling of the phase 

space. The challenge in isobaric simulations of lattice fluid systems is to ensure that Metropolis 

steps will allow microscopic volume changes, associated with an        energy difference, so 

that they are surmountable by the Metropolis criterion. In the following we present two methods 

developed to achieve this goal. 
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1.1. The partial grid point approach 

As explained in the previous section, the main problem with Monte-Carlo sampling of volume 

variations is the large energy jumps between different volume configurations, due to the finite 

size of the grid points. Suppose our system consists of a 2D box, bounded by closed boundary 

conditions on all sides except the right boundary edge. This right edge can be moved inwards or 

outwards to facilitate system volume alterations. The volume alterations themselves are 

quantized by the demand that  , the length of the system, is integer. If we wish to expand our 

system, the smallest volume change would be the volume covered by the   cells neighboring the 

right edge (see FIG 3). 

 

       

       

       

       

       

FIG 3 – A 2D lattice square system with sides (L, D). The smallest volume increment achievable by adding a full 

grid point to the right is        (   - the volume of one grid cell). 

 

The volume increment in this scenario, although sub-extensive, clearly grows with the growth of 

the system. In the thermodynamic limit of infinite sized systems, the volume increment would 

diverge, disabling any Monte-Carlo sampling of configurations characterized by higher energy 

due to volume variation. 

 

One approach to overcome this problem is the development of a protocol allowing the altering of 

the right edge boundary of the system by a step smaller than the length of one grid cell. Such an 

approach was developed by Pendzig, Dietrich & Nitzan
[20]

 (here we present a modified version 

of this algorithm). The core of their approach is enabling the edge boundary to move in a 

“continuous” manner, instead of by quantized steps. To facilitate this type of movement, the 

occupation of a partial grid point near the mobile boundary must be defined. In essence, for 

every particle occupying a partial grid point, an energetic price must be paid. The specific energy 

form associated with each particle residing on a partial grid point may be chosen in different 
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ways. One simple and convenient choice is                (henceforth,      ), where 

the partial occupation energy cost is linear in the temperature  , and       is the fraction of 

the grid point inside the system boundaries. As we shall see later, this choice leads to a linear 

relation between the boundary position 〈 〉 and the density of particles occupying the partial grid 

points. When the extreme grid point is entirely outside of the boundary (   ), the price of 

occupying the grid point diverges and no particles reside there. On the other hand, occupying a 

fully included grid point (   ) costs no extra energy. The aforementioned structure is 

schematically depicted in FIG 4. 

 

 

 

 

 

 

 

   

FIG 4 – Definition of a floating indicator   at the systems mobile boundary. The particle, shown here as a green 

square, occupies a partial grid point with      . 

 

 

The system consists of N3 particles on a square lattice, as seen in the following figure. The linear 

dimensions are   and  . The lattice unit cells are squares, whose volume is      
 . In this work 

we always set     . The location of N3 particle position is defined as the position of its central 

lattice point. The leftmost site is defined as    , and the rightmost would be    . Cyclic 

boundary conditions are applied to the y-axis. On the x axis, however, where the mobile 

boundary on the right is present, we must impose closed boundary conditions. Note that a 

particle may be placed both at     and     (each of these placements results in the left or 

right "wing" of the particle being outside of the system). In both cases we count such particles as 

 

 
   of a particle. To enforce a constant pressure  , we introduce a piston that is located on the 

right, applying a constant force on the      mobile boundary. The total (constant) number of 

particles in our system is  , and the total volume of the system is  . In the following discussions 

we will retain as much of these definitions as possible, with the exception of nomenclature 

changes related to the shape of the mobile boundary.  

        

      

Outside the system Inside the system 
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FIG 5 – Example of an isothermal-isobaric N3 system. 
 

The right boundary may move inwards or outwards, and change the total volume. Here   

signifies the position of the rightmost particle, and   is a continuous variable that effectively 

expands the system by enhancing the length of the box. Conforming to the aforementioned 

definitions,   may be larger than unity, representing that the mobile boundary is in fact not 

occupied at all. We shall thus define a complementary variable   : 

    {
    
    

 

The energy cost of partial grid point occupation, per particle, is therefore               . 

 

We now turn to determining the system energy, or Hamiltonian, for a general choice of   . First 

we stress that the particles interact only via hard core potentials. The hard core potential is 

implemented dynamically, by defining forbidden particle movements, and does not appear 

explicitly in the Hamiltonian. The only bulk contribution to the energy arises from the finite 

pressure exerted on the system from the right,     . In addition, we add the abovementioned 

boundary occupation energetic cost. For now let us study a general specific occupation cost   . 

The full Hamiltonian is: 

(2)              , 
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where   is the number of particles occupying     sites. We define a dimensionless energy 

scale 𝛿       , where β       
    . In an approximately square box, 𝛿   √ . Now we 

may rewrite the Hamiltonian as follows: 

(3)                        
 

 
(𝛿  𝛿          ) 

The probability of measuring the system in a state characterized by energy   is proportional to 

the Boltzmann factor: 

(4)                                 

 

In the system defined above there are two types of degrees of freedom, particle locations and 

mobile boundary location. Both may change dynamically, as follows: 

1) A particle may move one step at a time, to one of its four neighbors (up, down, left, 

right). The particle movement is allowed only if the new location is not excluded by 

neighboring particles.  

2) The location of the mobile boundary may vary, expanding (    ) or contracting 

(    ) the system.  

 

To fully define the simulation dynamical protocol, we need to fix the ratio between the rates of 

particles’ movement and boundary movement. Pendzig et al. leave this rate unspecified, enabling 

the simulation to alter volume variations and particle movements in a predefined manner. Here, 

we choose to take the mobile boundary to be infinitely faster than the particles, so that the 

boundary instantly thermalizes with respect to the particles in its vicinity. This choice simplifies 

the treatment, as it allows us to integrate out the boundary variable   analytically.  

 

First we find the equilibrium distribution of the boundary location   for a given particle 

configuration (and therefore a fixed value of  ). The only dependence of the conditional 

probability distribution for   on the particle configuration is through the occupation number  : 

(5)    |     (      )                  

 

The normalized (conditional) probability distribution function is therefore: 

(6a)         
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(6b)    ∫                 
 

 
 ∫                

 

 
 ∫       

 

 
 

 

We now explicitly show how the particles’ dynamics is fully characterized by the integrated 

quantities   . Let us consider the movement probabilities of the particles in the system. The 

Metropolis probability is defined as: 

 (7)        {
     

         
 

 

Different types of particle movements result in different energy changes   , and consequently 

different probabilities. Limiting ourselves to configurations which may be sampled by moving 

one particle at a time, there are 5 archetypes of new configurations (summarized in the following 

table). It is important to note that the mobile boundary position   does not change while a 

particle movement takes place, thus the energy difference is only due to changes in    . 

 

Table 1 – New sampled configuration archetypes. 

Description Energy variation Archetype 

A particle moves in the bulk, away 

from the mobile boundary, or a 

particle moving near the boundary, 

parallel to it. 

     ,      

       
1 

A particle moves from the boundary 

inwards, when other particles are still 

occupying the boundary. 

      ,      

               
2 

A particle moves into a boundary 

point from the bulk, when other 

particles are already occupying the 

boundary. 

      ,      

              
3 

A particle stretching the mobile 

boundary outwards by one grid point. 

       ,       

    
 

 
                

4 

The last boundary particle moves 

inwards, contracting the system by 

one grid point. 

       ,       

     
 

 
                

5 
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According to the Metropolis criterion (7), particle moves of archetypes 1, 2 and 5, which are 

associated with a non-positive energy change, have unity probability of acceptance. The only 

two archetypes of movement that increase the system energy are 3 and 4. We may explicitly 

write the acceptance probability of moves of every archetype, and find their average.  

 

A general function      can be averaged by: 

(8) 〈 〉  ∫            
 

 
  

Accordingly, the particle movements probabilities, averaged over boundary locations, are given 

by 

(9a)          

(9b) 〈      〉  ∫          
 

 
   

 

(10a)                         

(10b) 〈  〉  ∫           
 

 
   

  ∫                     
 

 
 

    

  
 

  

(11a)                                

(11b) 〈  〉  ∫           
 

 
   

     ∫                
 

 
 

  

  
    

 

Let us explore these probabilities more rigorously for our specific choice                : 

(12)    𝛿  ∫         
 

 
 ∫       

 

 
 𝛿            𝛿  

   

 
 

 

Where        is the incomplete Gamma function defined as: 

(13)        ∫          
 

 
 

 

We are interested in the limit of large systems, where the dimensionless 𝛿 is large, thus it is 

useful to calculate the 𝛿    (  fixed, but >>1) limit of equation (12): 

(14a)                 (
 

 
)
 

√    

(14b)    𝛿     
  

     
   

 
 

√   

    (
 

 
)
 

 
   

 
 

√   

    (
 

 
)
 

, 
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where the term    𝛿   is negligible compared with   𝛿    , and Stirling’s approximation was 

used to expand   .  

 

However, n and 𝛿 are dynamically related. The maximal occupancy is clearly bounded by the 

system width   which scales with 𝛿. The boundary occupation is expected to be lower than the 

bulk density, due to the extra energy cost. Thus, the relation, in equilibrium, between the energy 

scale 𝛿 and the average boundary occupancy 〈 〉 is given by: 

(15) {
   𝛿          

〈 〉    
       〈 〉     𝛿   

 

For an ideal gas (or extremely dilute N3 system),     . In finite densities, the pressure is 

always larger than the density, and therefore 𝛿  〈 〉. In the thermodynamic limit it is expected 

that the occupancy fluctuates around 〈 〉, and large deviations will be rare. For simplicity of the 

following treatment, we define the ratio   𝛿    and expect it to be typically greater than 

unity. 

 

Note that since 〈 〉 𝛿, the proper limit to consider is not that of fixed   and large 𝛿. Rather, both 

quantities diverge for large systems, with a fixed ratio  . In this limit, 

(16)   (𝛿    
 

 
            )  

  

     

 

In addition, we calculate the average boundary position 〈 〉  

(17) 〈 〉  ∫      
 

 
         

  ∫              
 

 
  

             
  [∫           

 

 
 ∫        

 

 
]    

  ∫              
 

 
  

           
    

  
 

   

 
 

 

In the large system limit     𝛿,  〈 〉   𝛿        .  

Thus we find that for large systems the mobile boundary is unlikely to be found in the region 

   . 
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Next we consider the movement probabilities of the particles in the system. As described above, 

the only types of movements that are affected by the boundary energetic cost are    and   . 

 

(18a)                  

(18b) 〈  〉  
    

  
 〈 〉  

 

The probability for acceptance of moves of type 3 is equal to the average boundary position in 

the thermodynamic limit. Crucially, 〈  〉 scales as 𝛿           in the thermodynamic limit, 

but the number of possible    moves scales as     , leading to scalable relaxation times. 

 

(19a)                          

(19b) 〈  〉  
  

  
    

    

  
    

To evaluate 〈  〉 in the large system limit, we use Stirling's approximation and find:  

(19c) 〈  〉  
    

√   (
 

 
)
     √

 

  
(
 

 
)
   

          √
 

  

     
   (     )

      

          √
 

  
𝛿       [               ] 

For    ,                      is positive and 〈  〉 decays at least as fast as 

       𝛿             √      in the large systems limit. 

 

The previous observation casts an unavoidable doubt on the applicability of the partial grid point 

approach. The exponential system size dependence may prevents us from correctly describing 

the N3 system in the thermodynamic limit where    .  

 

The physical meaning of the failure depicted in (19) is that even when the boundary is fully 

occupied with bulk density, the averaged location of the mobile boundary is 〈 〉〈 〉  1. Thus, for 

large systems, the probability of having a configuration with    , necessary to expand the 

boundary is exponentially small. As 𝛿 linearly depends on the pressure  , it is expected that 

relaxation times will also grow exponentially fast with it.  
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We therefore conclude that the partial grid point approach cannot be scaled up to large systems. 

Although the approach was developed to treat constant pressure lattice fluids, it proves incapable 

of simulating such models in the large system limit.  

 

It should be noted that although our implementation used an infinitely fast boundary, setting a 

higher boundary relaxation time, along the lines of Pendzig et al.
[20]

, would not solve the 

problem. In such settings, when the mobile boundary is fully occupied, it will fluctuate around its 

average location 〈 〉〈 〉 most of the time. The grid cell itself would require finer quantization the 

larger the system, as to be energetically capable of sampling higher volume configurations. This 

in turn would make spontaneous boundary jump exponentially rarer, impossible in the 

thermodynamic limit. In conclusion, implementing the “full” partial grid point approach by 

separating the particle and boundary movement would not solve the inapplicability of the method 

in the thermodynamic limit. The method may be used for small systems (for which some results 

have in fact been obtained), but larger systems cannot be explored due to the rapidly rising 

relaxation times. Relying on the aforementioned considerations, the partial grid point approach 

has only limited use, and a radically different approach is in order.  

 

In principle, it may be possible to modify the partial grid point approach using a different choice 

of   , one that will allow all transition probabilities to scale up reasonably with system size. 

Such a modification must be chosen carefully. Consider the function         (        ). 

From physical considerations it must be a monotonic function of  . It seems reasonable to have it 

approach zero for    , and unity for    . It can be shown that strongly convex selections of 

     near     reduce the decay rate of  〈 〉  due to increased system size. Unfortunately, 

convexity anywhere between zero and unity results in lowering 〈 〉 . 

 

1.2. The elastic boundary approach 

The first approach we reviewed used an energy cost protocol to view the boundary discretely 

sized grid cell as a “continuous” point indicator. This should have allowed sampling volume 

variations that do not scale up with system's size, resulting in transition probability that does not 

vanish in the thermodynamic limit. However, as implemented, the partial grid point approach did 

not live up to the expectations. A second method to achieve this goal is to let the mobile 
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boundary accept an arbitrary shape, not necessarily a straight line. For example, suppose the 

system shape at the current configuration is rectangular. We now sample a new configuration 

where the mobile boundary shifts by one grid cell, but only at one point (See FIG 6). 

 

       

       

       

       

       

FIG 6 – A 2D lattice system with sides (L, D). The smallest volume increment achievable by adding a single grid 

point to the right is     . This however requires the mobile boundary to bend and change its form. 

 

The curved mobile boundary may be harder to implement than its straight counterpart, but the 

advantage of this approach in the thermodynamic limit is clear. It was first utilized by Nies & 

Cifra
[42]

 to implement constant pressure Monte Carlo simulations in polymers. Using this 

method, a particle must always occupy a whole grid point, and there is no need to employ a 

correction of the form used by the former quasi-continuous approach. To implement such a 

boundary we must change our notation for its location. Up until now the mobile boundary was 

located at a single x-axis point, justifying the constant indicator  . In this approach we use a 

generalized indicator      to locate the mobile boundary position anywhere on the parallel axis. 

We still note that the grid point dimensions are quantized, such that      is integer for every  . It 

must be noted that a boundary occupying particle may move up or down, possibly expanding the 

system by      (see in the following FIG 7). 

 

The Hamiltonian of this system simplifies to its trivial form     . A possible disadvantage of 

this method is the finite probability of sampling configurations with wildly curved boundaries. 

These configurations may “trap” the system, by entropically favoring large volume variations 

over the minimal volume variations allowed by this method. An example of a “trapped” system 

is shown in FIG 7. 
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FIG 7 – A 2D lattice system with highly curved mobile boundary. Two possible variations in the bulge may change 

the volume by 1 (blue), but six may change the volume by 2-4 (red). 

 

A natural approach to mitigate the trapping of the system in such configurations is to augment 

the Hamiltonian with a surface tension term. 

(20)          {   }, 

 

Where   is the non-negative energy scale of the surface tension, and   the area of the system 

boundary. In our 2D system, the area degenerates to the length of the mobile boundary. Aiming 

at enforcing an almost straight boundary, we choose the surface energy term to be proportional to 

the local squared curvature at a point : 

(21)      [           ]  

 

The total surface area is the sum of all these local curvatures. The Hamiltonian then takes the 

form: 

(22)  [    ]      ∑        ∑ [           ]   

 

This form adds an intensive energy cost to volume changes that increase the local curvature. 

Such a term may inhibit volume variations, but not in a way that scales up with the system size. 

Careful selection of the surface tension energy scale   is in order. A practical guideline for 

setting   may be described as follows: its value should be low enough to allow local curvature, 

but high enough to exclude “macroscopic” topography in the system. 

 

The first condition may easily be implemented. Consider again the configuration variation 

depicted in FIG 6. The new configuration expands the system by one grid cell, and increases the 

local curvature on both its sides. The total energy variation is: 
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(23)             

 

Requiring that the surface tension does not impede this microscopic variation, we set the 

condition          . In the N3 system the particles are somewhat more elaborately formed, 

and the typical smallest volume variation requires expansion of 3 whole grid cells. Thus the 

relevant surface tension condition becomes          . The low limit condition on   is harder 

to define explicitly. We may however use trial and error to set its value as to avoid global 

“macroscopic” topography which could entropically trap the system (FIG 7). A simple way to 

find a suitable scale is to evaluate the average local curvature of the system: 

(24)  ̅    
 

 
∑ |           |  

 

Note that this function is different than (21). It uses absolute value differences instead of squared 

differences. As this is a purely diagnostic tool, it takes no role in the dynamics, but its 

interpretation is somewhat easier. If this average curvature is lower than unity, the particles are 

neatly ordered in a straight line, since the surface tension is too high to have significant curving 

anywhere. This limit is undesirable, as it brings us back to the straight boundary, resulting in the 

same difficulty seen within the partial grid point approach. On the other hand, if the local 

curvature is much larger than unity, the boundary is macroscopically curved. What we seek is a 

local average curvature slightly higher than unity. Values in the range of 1-1.2 were found to be 

appropriate using trial and error. These systems are found to have no macroscopic topographical 

features, but an average particle is not neatly ordered next to its neighbors. 

 

We must still fully define the location of the mobile curved boundary     . In principle, the 

boundary could be considered as an independent set of degrees of freedom, and the relative 

change rates of the two types of degrees of freedom (boundary and particles) is to be determined. 

We choose a simpler approach: the local mobile boundary is always attached to the furthest lying 

particle. For example, if the last N3 particle (highest   value) in some vertical position is placed 

in      , the local boundary position would be         . This choice allows us to consider 

only particle movements in the numerical scheme, as we had in the partial grid point approach. 
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2. Basic Results and Method Comparison 

In this chapter we will detail the basic results obtained by our isothermal-isobaric simulation 

protocol concerning the N3 system, and discuss the advantages and disadvantages of each 

implemented theoretical method. 

 

As mentioned, the system is isothermal-isobaric, at constant temperature  , Pressure  , and 

particle number  . It is customary to denote these conditions as constant    . To approach the 

thermodynamic limit, we wish   to be as large as computational resources allow. In addition, in 

order to minimize finite-size effects, it is favorable to have the system shape close to that of a 

square. The length of the system in our NPT ensemble is a dynamic quantity, but we set the 

width such that at the end of the density relaxation the system would be approximately square. A 

simple way to achieve this setting is to estimate in advance the equilibrium density of the system 

(for super-cooled system            ), and set the system width   such that its square 

produces that density: 

(25)   √
 

 
 

 

Since the only term in the system's energy is the pressure-volume term (    ), the system's 

Equation of State (EoS) depends on a single parameter  (P,T)= (P/T). We therefore choose to 

set the temperature unit to one, and present the EoS as a function of pressure. The length units 

are set such that the lattice constant and the area of a single grid cell is unity. 

 

 

2.1. The partial grid point approach 

We first implemented the “partial grid point” approach, following Pendzig et al.
[20]

 This 

approach utilizes a simple straight mobile boundary, but one which may advance continuously 

into the last lying grid cell. Particle occupation of the partial cells costs energy. We note again 

that in our implementation the boundary adapts (or thermalizes) infinitely fast compared with the 

movement of particles occupying partial grid cells. As a first validation of the simulator, we 

reproduce the known equation of state of the N3 system in the fluid regime. At very low 
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pressures we expect to see an ideal gas behavior of the form    . As the pressure increases, the 

density should deviate from an ideal gas and become sub linear, until a first order phase 

transition occurs in       . The calculated results are presented in the following figure, 

compared to N3 EoS obtained from a constant-volume grand canonical simulation
[33]

. 

 

FIG 8 – N3 equation of state (density vs. pressure), obtained by the partial grid point approach (     ). 

 

We find that the simulator reproduces the N3 equation of state below the phase transition 

pressure. We have simulated the system with initial low (      ) or high (      ) density 

settings, and concluded that the good agreement is obtained regardless of the initial condition of 

the system. However, problems with the partial grid point method arise when we increase the 

system size (number of particles) and approach the phase transition pressure. In the next figure 

we present relaxation times obtained in equilibration trial runs of systems at different pressures 

and sizes: 
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FIG 9 – Equilibration trials: Relaxation times of systems of different size and pressure. Each line represents a single 

pressure value. a) Fluid-like initial conditions          ; relaxation times rise as a power law with system size.          

b) Glass-like initial conditions          ; relaxation times rise exponentially with the energy scale 𝛿. 

 

We find that equilibration times for a dilute initial condition increase dramatically with system 

size for pressures in proximity of the phase transition pressure. This rise can be approximated by 

a power law of the system size      . The relaxation time also exhibits a mild dependence on 

pressure. Starting at a high density of        , the relaxation time dependence on system size is 

exponential. For       the relaxation time grows as     (    √ ), while for      , it 

grows as     (    √ ). These exponents qualitatively agree with results obtained from (19). 

We thus confirm that this simulation approach is problematic for exploring the    system in the 

thermodynamic limit.  

 

Although generally inapplicable for the description of large systems, the partial grid point 

approach can be utilized to obtain results for medium sized systems. The following figure shows 

the Equation of State, as calculated for a system of     particles. It is found that even for this 

system, which converges to the right EoS regardless of the initial condition in the fluid regime, 

the post transition regime may be poorly described. The simulation duration was not long enough 

for the density to converge to the same value from different initial conditions. Due to this 

problem, we are reluctant to trust these results, and are coerced to use a different approach for 

the more interesting post transition super-cooled regime. Relying on the aforementioned 

considerations, the partial grid point approach will no longer be of use in the rest of our work. 

 

a) b) 
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FIG 10 – Long time densities of systems initially setup with different initial conditions, for different pressures. 

Black dots: "Fluid system" initialization or low density; Red dots: "Glassy system" initialization, or a high density. 

Low pressure show no differences, but there is a growing density discrepancy in the high pressure regime, beyond 

the phase transition (     ). 

 

 

2.2. The elastic boundary approach 

As the partial grid point approach failed, we turned to the elastic boundary approach of Nies and 

Cifra
[42]

. Though it is considerably more difficult to implement, its Hamiltonian is simpler, and 

naturally temperature independent. The following figure presents the mid pressure equation of 

state obtained by using the elastic boundary approach with zero surface tension: 

 

FIG 11 – N3 equation of state, obtained by the elastic boundary approach (     ). 
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Again, the equation of state compares well with the grand canonical results
[35]

 in the liquid 

phase. We can fortunately report that the elastic boundary approach is devoid of the equilibration 

problem that occurred in the partial grid point approach; the new simulation approach generally 

equilibrates to the same (liquid phase) density regardless of the initial condition and size of the 

system. The following figure illustrates the relaxation time dependence on the system size, for 

the relevant pressure values.  

 

FIG 12 – Relaxation time for systems of different sizes and pressures. The initial condition used for the relaxation 

time measurements was        . Relaxation times rise sub-linearly with system size, as      . 

 

This observation is of course very encouraging, as it gives us hope of successfully simulating a 

lattice fluid system in the thermodynamic limit. We may now move on to discuss the high 

pressure behavior of our system in the super-cooled fluid regime, which is inaccessible to the 

grand canonical simulation. 
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FIG 13 –Equation of State in the high pressure regime, for systems of different sizes. 

 

The first obvious result is that the constant pressure system avoids the first order phase transition 

for very long times. Compared to the density relaxation times (FIG 12), the Equation of State 

remains stable for at least 3 more orders of magnitude in time. This meets our general 

expectations that the system would not be able to crystallize due to the dynamical arrest between 

ill ordered particles. Instead, the continuous liquid equation of state extends deeper into the high 

pressure regime. Once the pressure increased above ~0.75, the system experiences what seems to 

be a different 'phase transition', which appropriately narrows the larger the system becomes. At 

this stage the nature of the high pressure phase is not clear, but it does not seem to fit the super-

cooled liquid description of the R-Matrix theory
[34]

. Most notably, the observed ‘phase transition’ 

occurs at a pressure much lower than that predicted by R-Matrix theory (       ). 

 

To clarify the details of the state the system enters in the high pressure regime, we must present 

equilibrium system snapshots. In the next figure four such states are shown for pressures below 

and above the supposed phase transition at       . 
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FIG 14 – Equilibrium snapshots of systems with              . a)       , b)        , c)       ,     

d)      . White dots represent particles, Black spots represent voids. 

 

In FIG 14 we find various interesting phenomena. At pressures lower than about     , the 

system boundary exhibits a significant curvature. The boundary clearly does not resemble the 

straight line we had in the partial grid point approach. A detailed look into these configurations 

reveals that they indeed seem to be super-cooled liquids. As we shall see later, they contain no 

large scale particle clusters. By increasing the pressure over the transition at     , two distinct 

processes occur. The first is a gradual curving of the boundary, promoting macroscopic 

topographical features as hills and valleys. As explained in the first chapter, this phenomenon 

stems from entropic trapping of configurations. If a macroscopic feature occurs it has a low 

probability of being spontaneously dissolved (see FIG 7). The second process seems to dominate 

the occurrence of higher density: clusters start to aggregate near the mobile boundary 

a) b) 

c) d) 
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(recognized in FIG 14 (b) as bright white areas). The 'phase transition' implied by the density 

jump seems to originate in heterogeneous nucleation near the mobile boundary, resulting in 

phase separation between a dense equilibrium fluid and a solid. Further increase of the pressure, 

up to        increases the relative abundance of clusters, thus increasing the average density. 

At even higher pressures, the system no longer becomes denser, but the boundary curvature 

increases in a seemingly unbounded fashion. This process continues until the system splits into 

non-interacting subdomains, separated by stable macroscopic voids. 

 

To counter the macroscopic curvature we utilize the surface tension term in (20). The next figure 

displays the local average curvature (24) as a function of the surface tension scale  . 

 

FIG 15 – Average local curvature  ̅, as a function of surface tension energy scale (      ). The desirable value of 

 ̅ is found to be in the range       (shown with dashed lines). 

 

In the previous chapter we argued that a suitable value  , in terms of the boundary curvature, 

results in    ̅     . From FIG 15 it is evident that an appropriate choice for the surface 

tension energy scale is                . We have explicitly checked that this parameter 

range is appropriate for the whole pressure/density range of interest. Although the surface 

tension scale range is, strictly speaking, pressure dependent, this dependence is very slow in the 
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region of interest of       . The following figure presents long-time system snapshots with this 

limiting surface tension scale. 

 

FIG 16 – Equilibrium snapshots of systems with        ,         . a)       , b)      . 

 

Implementing a surface tension term successfully restrains the curvature of the mobile boundary, 

and keeps it relatively straight at all times. It must be noted that as long as the surface energy 

scale is low enough, this method does not suffer from the difficulty encountered with the partial 

grid point approach. Boundary particles may easily move out and locally increase the system 

volume, but macroscopic curvature is disabled by the elastic character of the mobile boundary.  

 

Although boundary curvature is effectively restrained by the surface tension, another problem 

arises – accelerated nucleation near the mobile boundary occurs at sufficiently high pressures 

(FIG 16(b)), resulting in a high density “wall” along the boundary. This heterogeneous 

nucleation is the process limiting the super-cooled metastable branch at high pressure. To better 

understand the formation of these heterogeneous features, we explore the system density and 

mobility as a function the horizontal location  . The density      is clearly defined, but there are 

many ways to quantify mobility, and here we choose a simple one. The system mobility is the 

number of allowed movements per particle. At the ideal gas limit each particle has exactly 4 

allowed moves. In the other limit, the solidified sample (or ideal glass), all particles are locked in 

place and the mobility is zero. In the N3 simulations it is expected that the mobility would 

a) b) 
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initially be rather high, and it should drop as the system density increases. Spatial variation in 

mobility might be correlated to nucleation and the rate of cluster formation. For example, the 

mobility near the mobile boundary is expected to be much higher than deeper inside the sample. 

This results from the fact that there are no particles blocking the way from the outside. The 

higher mobility near the boundary explains why heterogeneous nucleation is much more rapid 

than homogeneous nucleation, as particles near it may move at much higher rates and cluster 

together. Deeper in the sample, higher mobility is linked to lower density, which enables slow 

but significant homogeneous nucleation and cluster growth.  

 

 

FIG 17 – Density vs. time graphs for systems at various pressures above the transition. a)        ,    ,          

b)        ,         . 

 

In order to study the interplay between relaxation towards the super-cooled phase and the 

nucleation processes along the mobile boundary, let us look at FIG 17. Below        we 

observe that systems relaxes to a dense state, with relaxation time        Then, these dense 

configurations seem stable for more than an order of magnitude in time. On the other hand, 

higher pressure configurations exhibit gradual density increase with no signs of relaxation. 

Moreover, the elastic boundary (with          , makes the system unstable even at a lower 

pressure of      .  

 

a) b) 
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In order to understand the processes underlying the system instability, we look at the following 

figure that presents density and mobility profiles across the “horizontal” coordinate   (normal to 

the mobile boundary) for different times and pressure realizations. 

 

 

FIG 18 – System density and mobility as a function of the x-coordinate for different times (       ). a) Low 

pressure,       , b) High pressure,       . 
 

In the low pressure case, at times of order five times the relaxation time, one obtains a dense 

configuration, uniform along the sample, which remains metastable for at least another order of 

magnitude in time. This attests for an efficient transfer of the piston pressure to the whole 

system, on time scales significantly shorter than the nucleation times. In contrast, the high 

pressure case, by the time the density profile becomes flat and the pressure is efficiently 

transferred to the distant part of the sample, an even denser regime emerges next to the mobile 

boundary. This is manifested by the density peak at the right edge of the sample, and more 

pronouncedly by the mobility deep. As time goes on, this denser (nucleated) regime becomes 

more pronounce. Thus, in the low pressure regime, system (FIG 18 (a)), one may justify the 

a) 

b) 
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notion of a super-cooled state, but at higher pressure the emergence of a solidified "wall" occurs 

together with systems' relaxation to the super cooled state.  

 

In conclusion, we find that a metastable super-cooled state is achievable only for       . A 

typical higher pressure simulation will experience heterogeneous nucleation and phase separation 

before the inner liquid is exposed to the piston pressure. Once this solid inelastic wall is formed, 

the pressure of the piston is not transferred inside, and thus the liquid beyond the “solid wall” 

will equilibrate to a relatively low density, far below Random Closest Packing density. The R-

Matrix theory expects a second order phase transition to occur at a pressure of        [34]
, far 

beyond the reach of our simulation. Instead, the elastic boundary causes rapid creation of 

heterogeneous cluster nuclei, separating the inner liquid from the mobile boundary. Even without 

surface tension the system seems to rapidly phase separate at quite low pressures, surfacing the 

possible existence of a kinetic spinodal
[12]

 in the    system very close to the equilibrium 

transition pressure. This depends on homogeneous nucleation, and will be explored later in more 

detail. We are unable thus far to establish a method of delaying the heterogeneous nucleation, 

denying any hope of verifying the existence of a second order metastable phase transition with 

this implementation. The remaining portion of our work will concentrate on characterizing the 

super-cooled state where it exists, and exploring the nucleation processes observed in the system. 
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3. The Super-cooled State 

In this chapter we concentrate on the super-cooled state in the regime where it is obtainable by 

simulation. First we find how deep we can delve into the super-cooled regime by filtering out 

phase separated realizations. The Equation of State, compressibility, and dynamic correlation 

functions are then explored, in the intent of finding behavior typical of glass formers. 

 

3.1. Equation of state and compressibility of the system 

To clearly define a super-cooled state, we require it exists for at least one time decade before 

succumbing to phase separation. Quite large systems, interesting enough for our purposes, 

exceed         particles, and take at least       time steps to relax completely (see FIG 12). 

This implies that the super-cooled state must exist at least until             to be clearly 

defined. 

 

We previously claimed that the super-cooled phase cannot be well defined for pressures 

exceeding       . However, looking at specific realizations we find that while a sizable 

fraction of them undergo phase separation at times comparable to their relaxation, others remain 

in the super-cooled state for much longer times. Fortunately, it is simple to filter out the former. 

For this purpose, we define the solid fraction of a configuration as the fraction of particles having 

4 closest neighbors surrounding them. The filters implemented check whether the solid fraction 

at the end of the simulation is significantly different than in the beginning (after relaxation). This 

notion of solid fraction, or more accurately cluster, will be further elaborated on later. We 

measured the solid fraction at the beginning and ending of the simulation over many realizations. 

Next we defined a “tight” filter, for realization initially within one standard deviation of the 

average solid fraction, and terminally within 1.5 standard deviations. Comparably, a “loose” 

filter was defined with limits of 1.5 and 1.8 standard deviations, respectively. Utilizing these 

filters, we present equation of state measurements for systems containing       and     

particles. 
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FIG 19 – Equation of state measurements with realization filtering. a)        , b)      . 

 

As suspected, higher pressures see the unfiltered equation of state start deviating from the 

filtered measurements. These are good news, as it potentially allows us to push the obtainable 

super-cooled phase deeper into higher pressures. However, the deviation of the unfiltered EoS 

implies that the fraction of realization failing the filtering procedure grows significantly. The 

next figure presents the percentage of realization passing the filters. 

 

FIG 20 – Percentage of realization passing the filter as a function of pressure. a)        , b)      . 

 

FIG 20 demonstrates how the fraction of realizations passing the filters drops with higher 

pressure. The larger the system becomes, the faster the drop. This in turn corresponds to more 

realizations going through phase separation before a super-cooled state can be defined. For fairly 

large systems containing     particles, only about 30% of the realizations exhibit a clear super-

a) b) 

a) b) 
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cooled state for       . Obtaining useful data on the super-cooled state becomes statistically 

challenging at higher pressures, but perhaps pressures up to       can be reached with a 

reasonable efficiency of      . Larger systems fair even worse. We therefore have 

computational difficulties in producing meaningful results for pressures higher than     , which 

is, as mentioned earlier, far lower than the phase transition pressure expected by the R-Matrix 

theory (      ). In this chapter we shall thus limit our discussion about the super-cooled phase 

to the pressure range            . 

 

The (isothermal) compressibility     
 

 

  

  
   

    

  
 is an important measure of the system. 

As long as it remains capable of obtaining a super-cooled state, the system compressibility must 

smoothly increase, as the density increases smoothly with pressure. Any sort of phase transition 

should leave a clear mark on the compressibility, and thus it may lead to a useful way of 

detecting an incumbent transition. Although this observable can be inferred from the equation of 

state, we directly measure it by utilizing the fluctuation-dissipation theorem (FDT): 

(26)     
〈  〉 〈 〉 

〈 〉
   

〈   〉 〈   〉 

〈   〉
 

 

Strictly speaking, we must take care when using this theorem, as it is invalid for glassy systems 

(or generally, systems out of equilibrium). It is thus important to let the system relax to local 

equilibrium before commencing with the volume averaging. As long as the initial condition of 

the system is of low density, and the pressure is not too high, starting the measurement after the 

relaxation times of FIG 12 ensures having an equilibrated system. The next figure shows the 

compressibility for filtered and non-filtered samples. 
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FIG 21 – Compressibility measurements for a         system. 

 

We find that the phase separation phenomenon, which becomes more prevalent in higher 

pressures, has a stronger footprint on the compressibility than on the density of the system. The 

non-filtered compressibility clearly deviates from the filtered measurement already at       . 

Therefore utilizing the filters is crucial for obtaining the right compressibility values. In the 

explored pressure range the compressibility grows by about 25%, while the density increases 

only by 1%. This corresponds to significantly more density fluctuations in the deeper super-

cooled regime. We observe a clear increase in the compressibility, but it is too far from the 

presumed singularity to confirm a second order phase transition.  

 

3.2. Dynamic correlation functions 

The defining mark of super-cooled states in glass forming systems approaching the glass phase 

transition is the two-step relaxation of a dynamic correlation function. Deep enough inside the 

super-cooled state, any dynamic correlation function should exhibit two distinct processes:   

(short time) and   (long time) relaxations. Separating the two relaxation processes is usually a 

well-defined plateau. The usual interpretation for those two steps utilizes the picture of local 

states existing in so-called geometric cages. The fast  -relaxation corresponds to configuration 

changes within a local cage, while the slow   relaxation describes the collective decorrelation of 

the individual cages on a macroscopic scale. The deeper the supercooling, the more stable the 

cages become, making the  -relaxation process slower. In glass-like states the cages do not 

break, and the post  -relaxation plateau extends infinitely. Measuring a dynamic correlation 
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function will help us validate if the constant pressure N3 system fits the glass former family in 

this aspect. 

 

The most straightforward dynamic correlation function is the density-density correlation 

function, defined as the density average at two different times      
[5]

: 

(27)          
 

 
∑ 〈           〉

 
    

 

Since the system is in metastable equilibrium, the correlation function only depends on the time 

difference      , and we may write: 

(28)      
 

 
∑ 〈         〉 

    

 

In the N3 lattice system the density of an occupied grid point is unity, and the density of a non-

occupied point is zero. The function      thus counts the number of grid points occupied at both 

times, and divides the sum by the number of particles. The density-density correlation function 

may actually be defined in quite different ways, but this definition is adequate for our uses. The 

following figure depicts      measurements for systems of different pressures. 

 

FIG 22 – Density-density correlation function for a       system. The ‘Tight’ filter was used to prevent phase 

separated samples from interfering with the measurement. 
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In FIG 22 there is no plateau and it seems that  -relaxation starts at short times. The correlation 

decay resembles a stretched exponential of the form 

(29)         [ (
 

 
)
 

] 

with           . This form is typical for  -relaxation, and is often related to heterogeneities 

in the sample. Suppose the system initially contains solidified clusters characterized by a broad 

spectrum of sizes. The larger a cluster, the longer we expect it remains correlated. Therefore a 

cluster size spectrum implies a broad decay of the dynamic correlation function. We shall later 

verify the existence of such a size spectrum, and its associated spectrum of relaxation times. 

 

An important note must be presented on the analysis of unfiltered N3 samples. We have seen that 

at higher pressure a larger fraction of realization do not stay super-cooled, but rather undergo 

phase separation through heterogeneous nucleation near the mobile boundary. Had one not 

noticed this behavior of the system, the results of dynamic correlation functions such as      

would have been very different, and in fact actually resemble what would be expected of deeply 

super-cooled states in glass formers. High pressures are characterized by more frequent 

occurrence of large-scale clusters, which have very long correlation times. Clusters situated near 

the boundary are pressed directly by the piston, and may take even longer to decay. These 

clusters will result in the dynamic correlation function actually exhibiting a plateau typical of 

glass forming systems. The next figure illustrates such a case. 
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FIG 23 – Misleading results in non-filtered measurements of dynamic correlation functions.  a) Density-density 

correlation function for different pressures. Higher pressures see the formation of a distinct plateau. b) An 

equilibrated (               ) sample showing large-scale clusters (in white) situated near the mobile 

boundary, causing the plateau formation in     . The procedure used to mark clusters will be discussed in length in 

the following chapter. 

 

The importance of filtering the samples is thus clearly demonstrated. Without filtering out phase 

separated samples dynamic correlation functions would exhibit misleading behaviors, typical of 

deeply super-cooled states or even glasses. As noted earlier, the phase separation occurring more 

rapidly in high pressure denies the effort of obtaining deeply super-cooled samples and 

validating whether the N3 constant pressure systems conforms to the usual glass forming system 

behavior. 

 

  

a) b) 
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4. Nucleation 

As comprehensively discussed in the preceding chapters, in a large fraction of samples the N3 

constant pressure simulator does not obtain the sought-after super-cooled states. Instead it ends 

up with rapidly forming phase separated configuration, consisting of liquid in rather low density, 

and solidified clusters. The largest of clusters seem to be formed through heterogeneous 

nucleation near the mobile boundary. However, homogeneous nucleation inside the sample 

apparently plays a significant role in the phase separation process, raising the option of a possible 

existence of a kinetic spinodal. In this chapter we will discuss the typical phase separation 

scenario found in the simulator runs, and mainly the creation of solidified clusters. 

 

4.1. Cluster definition 

The first step in analyzing the cluster formation processes observed in the system is to 

consistently and uniquely define a solidified cluster. Potentially many definitions can be used, 

and here we describe one quite simple definition. In the N3 system particles do not occupy 

neighboring grid points. The closest particles may be placed at a distance of √  unit lengths, in a 

way identical to a knight’s move in chess. At most, a particle may have four nearby particles at 

the same distance. These particles can be ordered in two distinct ways, which we note as 

clockwise (CW) and counter-clockwise (CCW). The following figure clarifies this picture. 

 Y  X  

X    Y 

  O   

Y    X 

 X  Y  

FIG 24 – Ordering options available for N3 Clusters of the square grid. A central particle is positioned in “O”. 

Neighboring particles may be positioned at a knight’s move in either red “X” (CCW) or blue “Y” (CW) cells, but 

not in both cells separated by √  and   unit lengths.  

  

The entire system can be ordered ideally such that each particle is surrounded by four nearest 

neighbors in either CW or CCW formation. This will result in an optimal packing density of    . 

For any configuration of the N3 system, with particles located at        ,  We define a solidified 
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cluster as a set of contiguous particles residing on the same sub-lattice, having at least   nearest 

neighbors positioned in either CW or CCW formation. All particles in the same sub-lattice 

should have their neighbors of the same type (CW or CCW). The parameter   can take integer 

values in the range    . If a particle has one neighbor of one type and two neighbors of the 

other type, only the neighbors of the larger set are taken into account.  

 

We now use the definition of clusters to analyze several types of configurations discussed above, 

e.g. the initial disordered state, the super-cooled state, the phase separated and the domain 

separated state. The following figure presents these system configurations, where we have 

highlighted the clusters on the liquid background. 

 

 

FIG 25 – Clusters in different N3 states, simulated with         and    . Clusters analyzed with parameter 

   , are highlighted in white. Minimal cluster size was chosen to be 5 particles. a) Initial condition, almost 

devoid of clusters. b) “Equilibrium” super-cooled state (      ), characterized by many small clusters. c) Phase 

separated Equilibrium state (        , with macroscopic clusters near the mobile boundary. d) Domain separated 

state (     ), identified by macroscopic void “fingers” penetrating deeply into the sample. Most of the particles 

are found in large solidified clusters. 

c) d) 

a) b) 
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We use here the choice    . Choosing     does not change these pictures qualitatively. 

Setting positive surface tension in the range          provides similar system states, with the 

formerly discussed benefits and disadvantages. FIG 26 presents states obtained by simulations 

augmented by surface tension with scale       . The particulate settings of these systems 

were depicted earlier in FIG 16. 

 

FIG 26 – Clusters in different N3 states, simulated with         and       . Neighbors parameter    .    a) 

“Equilibrium” super-cooled state (      ), b) Phase separated Equilibrium state (       . 

 

The clusters in the surface tension augmented systems are qualitatively similar to those observed 

with    . The surface tension straightens the mobile boundary, but phase separation is still 

clearly seen in pressures above       . Due to the lack of domain separation in high pressures, 

these systems are easier to analyze. We thus explore cluster formation is systems with surface 

tension scale of       . 

 

It is important to stress that the existence of clusters does not mean the system is solidified. Our 

simulations start with a random fluid-like initial condition, but even there many clusters can be 

found. The cluster number slowly increases as more clusters are nucleated. At long times larger 

clusters form partly due to merger of many small clusters. The total number of clusters should 

then decrease until a steady state is assumed by full equilibration or dynamical arrest of nearby 

clusters. 

 

 

a) b) 
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4.2. Properties of the clustering process 

We first measure the number of clusters in the system as a function of time and pressure.  

 

FIG 27 – Cluster number (divided by particle number) as a function of time for 3 different pressures (       ). 
 

FIG 27 generally conforms to the above scenario: The cluster number initially increases, and 

reaches a maximal value at      time steps, which we term the clustering timescale. We have 

previously shown that this timescale marks the onset of the heterogeneous nucleation near the 

mobile boundary, or the phase separation. At this time clusters near the mobile boundary start 

growing, decreasing the total number of clusters in the system. Higher pressure runs seem to 

exhibit a faster decay of the cluster number. Interestingly, even for       , where we have 

previously found the system to remain metastable up to      , one observes that underlying 

processes of nuclei growth and merger do occur, even as the macroscopic density remains 

constant. 

 

Next we check how the cluster sizes vary with time. We expect the average cluster size to 

sharply increase from the clustering timescale onwards. To demonstrate this, we plot the average, 

median, ant largest cluster size as a function of time. 
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FIG 28 – Cluster average, median and largest size (number of particles) as a function of time measured for super-

cooled and phase separated samples (       ). a) Super-cooled (      ), b) Phase Separated (      ). 

 

As expected, all systems demonstrate a rapid increase in the size of the largest cluster after the 

clustering timescale. Note that a giant largest cluster is formed even for low pressure, where no 

heterogeneous nucleation was observed, supporting the notion that homogeneous nucleation 

plays a role as well. 

 

Using the improved understanding of the nucleation process, we may improve upon filtering 

crystallized realizations. The following figure demonstrates cluster average size measurements, 

and its standard deviation, for systems at different pressures. 

 

FIG 29 – Cluster average size and standard deviation as a function of time measured for three different pressures 

(       ). a) Average cluster size, b) Cluster size standard deviation. 

a) b) 

a) b) 
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We note that a rapid growth of heterogeneous clusters near the mobile boundary is associated to 

a rapid increase in the size standard deviation. One may use this quantity to filter out nucleated 

systems, in order to better characterize the super-cooled, non-nucleated, configurations. 

 

4.3. Classical nucleation theory and the N3 model 

Now that we have discussed the cluster formation in general terms, we shall try to place the 

findings in the framework of the classical nucleation theory (CNT)
[1]

. First suppose the system 

must be solid in true equilibrium. In the N3 system, we know that to be true for pressures higher 

than about       . Under these conditions the solid state is favorable with respect to the 

liquid. More accurately, a solid phase is characterized by lower Gibbs free energy than the liquid. 

This is true for each particle: at high pressures, every particle contained in a solid cluster lowers 

the total Gibbs free energy by some positive factor      . CNT postulates that homogeneous 

nucleation occurs only when a critical sized cluster happens to form. Small clusters may easily 

be formed, but are just as easily dissolved. This can be thought of as a surface tension force 

which acts to dissolve small sized clusters. Surface tension is proportional to the surface of the 

cluster; it grows slower with cluster size, in comparison to the Gibbs free energy (which is 

proportional to the cluster volume, or size). The critical cluster size is thus derived from the 

competition between a surface and bulk term. In 2D, this notion can be formulated as follows: 

(30)           

Where    is the critical cluster size,     the Gibbs free energy gain per unit area of solid,    the 

critical cluster perimeter, and    is the surface tension cost per unit perimeter length. The critical 

cluster size and perimeter are connected through a geometric link in the form 

(31)       

Where   is a constant, and   is usually expected to be 
 

   
 (  is the dimensionality of the 

system). 

 

Realistically, it is impossible to calculate the values of       and    analytically in such a 

geometrically complicated system. To add complexity, these terms are not derived from energy 

variations between configurations (typically zero), but from entropic differences. Therefore, we 
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shall instead try to measure    directly. Clusters smaller than    should typically dissolve, while 

larger clusters should grow, given enough time. In other words, clusters larger than    have a 

larger probability of accumulating particles, in comparison to the probability of losing particles. 

To measure the growth and decay probabilities we utilize the cluster cataloguing in each 

snapshot of the system. For each cluster in the catalogue, the possible moves that increase or 

decrease cluster size are counted separately. Next we define a growth (   ) and decay (   ) 

probabilities of cluster   as 

(32a)     
     

            
 

(32b)     
      

            
 

Where       is the number of particle moves that increase the total size of the cluster, and        

is the number of particle moves that decrease the cluster size. The average net growth is then 

defined as the difference between the two probabilities: 

(33)             
            

            
 

A negative     means that cluster   tends to dissolve, while positive     means the cluster tends 

to grow. The higher the magnitude of the net growth, the stronger this tendency is. This 

measurement is in fact a crude first order estimate of the real net growth, as it does not account 

for series of moves, but only single particle moves from the snapshot measurement initial 

positions. The following figure presents net growth measurements as a function of cluster size, 

for a large system with        and       . 

 

FIG 30 – Cluster net growth parameter as a function of cluster size (       ). a)       , b)       . 

a) b) 
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These measured profiles generally confirm CNT expectations. Small clusters have negative net 

growth, indicating a tendency to dissolve. The larger the cluster, the more likely it is to grow. 

Cluster below the size of ~20-30 have excellent statistics, averaging to a clear        

dependence. The critical cluster size, for which      , is      , and it is interestingly 

independent of pressure. The reason is that steady state liquid density has quite a slow 

dependence on the pressure beyond the phase transition. Larger cluster sizes have much worse 

statistics in comparison with the small ones, thus        spreads quite wide for     . There is 

however a feature of this figure which is worth extra consideration. Very large clusters 

exceeding       particles always tend to grow, but clusters in the mid-range of         

particles show a very wide spectrum of probabilities. Some grow rapidly, but few actually tend 

to shrink due to a large perimeter. This range no longer fits the classical nucleation picture. 

These clusters are not nucleated but formed through nucleus growth. At some point many mid-

sized clusters are formed. They start out isolated in a liquid surrounding, but eventually find 

other mid-sized clusters in proximity. Particle exchange between clusters, a complicated little 

understood process, then kicks in. This process is most likely responsible for the wide spectrum 

of probabilities observed in the N3 system. 

 

A word about the difference in        between super-cooled and phase separated states is in 

order. Qualitatively, the growth probability in phase separated states is quite similar to the super-

cooled state. Both have the same critical cluster size       and the same behavior in the mid-

range of the cluster size spectrum. The main difference between the two states occurs in the high 

range of the spectrum. Large clusters in a super-cooled sample tend to saturate at some net 

growth value, while in a phase separated sample, large clusters grow slower than mid-sized 

clusters. This phenomenon likely results from the role played by homogeneous nucleation. Phase 

separated samples form their clusters mainly through rapid heterogeneous nucleation and growth. 

These large boundary clusters reach their final size much more readily than slow growing 

homogeneously nucleated clusters. Moreover, boundary clusters may only absorb particles from 

one side, inevitably leading to slower growth.  

 

As we have measured the critical cluster size, it is now possible to define the fraction of the 

system existing in solid state as the fraction of particles belonging to clusters larger than   . The 
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following figure shows the solid fraction of the sample as time progresses, and typical cluster 

size integrated spectrums. 

 

FIG 31 – Solid fraction as a function of time and cluster size integrated spectra. a) Solid fraction as a function of 

time for 3 pressures (       ), b) Cluster size integrated spectrum (CCDF) for super-cooled and phase separated 

states (     ). 
 

Perhaps quite disappointingly, there is no qualitative difference in the solid fraction 

measurements at different pressures following the clustering timescale (     ). Both super-

cooled and phase separated sample exhibit a rapid rise in solid fraction, but a difference is 

observed following the solidified “wall” formation at      . The super-cooled sample, devoid 

of solidified heterogeneous clusters has a somewhat lower rate of solid accumulation. This 

feature can be tied to the slower growth rate of homogeneous clusters. An important observation 

is that even the low pressure samples we considered super-cooled have a large fraction of 

supercritical clusters. This observation raises doubts as to our ability to achieve a metastable 

super-cooled state even at the lower pressure values studied. It is however only part of the story; 

supercritical clusters are not too much of a problem as long as they grow slow enough. 

Examining the CCDF of the cluster size, it is apparent that the clusters at low pressure are indeed 

smaller on average than in the higher pressure. Therefore, it is more likely that significant bodies 

of liquid remain intact between supercritical clusters for longer times.  

 

The last facet of cluster formation we explore is the fractal dimension of the clusters. The fractal 

dimension may be defined by the power law that relates the cluster size and perimeter. The 

cluster perimeter here is defined as the number of particles which are part of the cluster but have 

a) b) 
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unoccupied neighboring spaces. In regular 2D shapes     , but the N3 system clusters seem to 

behave rather differently. The following figure presents on a single graph the cluster size and its 

perimeter.  

 

 

FIG 32 – Cluster size as a function of its perimeter (              ). A power law fit of the functional form 

                is drawn in black. 
 

As clearly shown in FIG 32, the cluster size obeys a power law in respect to the cluster 

perimeter. The power exponent is however very different from 2. The clusters in the N3 system 

are therefore significantly ramified in nature. A survey of clusters indeed shows clusters having 

many extensions, protrusion and holes, which serve to rapidly increase their perimeter as cluster 

size increases. A fractal nature of the critical nucleation grains has implications for nucleation 

time estimates, and might serve as a hint for possible modifications of the CNT. 
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5. Conclusions 

In this study we implemented a constant pressure Monte Carlo simulation of the N3 model on a 

square lattice. This discrete extended exclusion zone model was thought to be a good case study 

for exploration of deeply super-cooled state of a simple amorphous material. We implemented 

the model using two distinct approaches, one following Pendzig et al.
[20]

 (partial grid point), the 

other due to Nies and Cifra
[42]

 (elastic boundary). Both approaches reproduce the known N3 

properties at low pressures and densities corresponding to the equilibrium fluid phase, but the 

partial grid point approach has proved to be very problematic at high pressures, particularly in 

large systems. The partial grid point was analytically analyzed and found to be inadequate in the 

thermodynamic limit due to an unavoidable growing energy gap. A proper modification to the 

choice of energy cost of particle occupation may fix this problem, but other energetic limitations, 

particularly at the low-  region, may still render this approach unusable for large systems. 

 

The elastic boundary approach fares somewhat better: by ensuring an intensive minimum volume 

variation we arrive at a robust implementation able to correctly simulate very large systems. An 

appropriate surface tension energy scale is nevertheless required, as systems devoid of any 

surface tension tend to form wildly curved boundaries and even separated non-interacting 

domains. The model was accompanied by a development of an efficient rejection free particle 

movement algorithm, supporting the simulation of large densely packed systems. 

 

Local variable measurements show heterogeneities in the form of density/mobility gradients in 

the direction of the mobile boundary, hinting about a finite timescale for the outside pressure to 

seep deep into the sample. This creates further uncertainty about the actual pressure found in 

different locations. Methods to equate pressures everywhere in the system, or even an evaluation 

method of local pressure, were not implemented in this study. Their inclusion could potentially 

lead to significantly better results. Furthermore, other ways to control boundary curvature could 

be employed instead of the surface tension term. For example, one could implement a shear 

force, parallel to the mobile boundary, acting on the outermost particles. Such methods are 

expected to contribute to the production of more stable super-cooled samples, and thus may aid 

future exploration of the N3 model in high pressures. 
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Once the implemented model was validated, we turned to explore the system properties in the 

little understood regime beyond the first order phase transition. There we found the expected 

super-cooled phase, which unfortunately does not seem to be stable far into the deeply super-

cooled pressures. More specifically, at higher pressure heterogeneous cluster nucleation near the 

mobile boundary becomes more rapid and denies a clear distinction of a super-cooled state. 

Instead, a phase separated state is formed where the outer part of the system clusters up while the 

inner part remains mostly a low density liquid. We have shown that heterogeneous cluster 

nucleation is faster and more efficient than homogeneous nucleation, resulting in a “solidified 

wall” separating the inner liquid from the outside piston. Due to the hard-core nature of the 

particles, such a wall completely isolates the inner part from the piston, leaving it in a much 

lower pressure that the one applied externally.  

 

Where heterogeneous cluster formation is rather slow, mainly in the pressure range          , 

homogeneous clustering is the lead cause of phase separation. Supercritical clusters with 

tendency to grow are rather abundant even in samples exhibiting smooth super-cooled properties. 

However, homogeneously formed clusters grow slowly, as their growth is impeded by 

mismatching surfaces of nearby clusters. Nevertheless, the observation of significant 

homogeneous nucleation suggests the possible existence of a kinetic spinodal. If that is indeed 

the case, any effort to avoid heterogeneous nucleation is futile and high pressure super-cooled 

states cannot be obtained. We cannot provide conclusive evidence on this matter, as it would 

require a method of pushing the super-cooled regime to higher pressures. 

 

The most deeply super-cooled samples in our investigations were at far lower pressures than the 

theoretic R-Matrix predicted termination of the super-cooled phase. In pressures where a super-

cooled state can be defined, no direct footprint of an incumbent glass transition was found in 

dynamic correlation functions. We observed an  -relaxation phase which exhibits stretched 

exponential time dependence, suggesting spatial variation in the relaxation processes. This fact 

can be explained by the existence of a spectrum of clusters in varying size. Any such 

measurements must be conducted after filtering out phase separated samples, as their inclusion 

results in misleading behaviors of the dynamic correlation functions. In summary, the constant 

pressure N3 square lattice model did not live up to the hopes of producing large high pressure 
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super-cooled state configurations. Despite our efforts, we are unfortunately unable to report new 

evidence of an incumbent ideal glass transition in this model. Possible ways to improve on the 

simulation method may lead to better results in the future. 
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Appendix: Technical aspects 

I. Basic numerical implementation 

The first step in the exploration and computation of the N3 system is implementing the system in 

a simple and efficient numerical scheme. Implementing the N3 system in isothermal-isobaric 

conditions requires some refined consideration. First, we wish our scheme may be able to handle 

systems with as many particles as possible, as to approach the thermodynamic limit. This 

requirement imposes the heaviest restrictions on our scheme. Larger systems require more 

computation to achieve the same computed time scales, and more memory to handle the system 

information. In large systems of the scale we wish to explore, efficiency turns out to be a more 

restrictive than information capacity. Another hurdle we have to overcome is allowing the 

system to expand and contract, as its volume may change at every new sampled configuration. In 

chapter 1 we have discussed how to define a mobile system boundary such that sampled 

configurations expanding the system would be permissible in reasonable time. Now we need to 

use this knowledge to implement a mobile boundary. 

 

The basic structures required for implementation of the 2D N3 model are two data arrays. The 

first array represents the grid (shall be called GRID). This is a 2D array representation of the 

particle locations on the lattice, and it is defined as described in the following: 

1. The first dimension in GRID represents the x-axis, and the second dimension represents 

the y-axis. 

2. If location       is occupied by a particle tagged as an integer  , the matching       cell 

in GRID is set to the particle tag  . As discussed, the particle may be viewed as 5-celled 

crosses. When we speak of an occupied location we always mean the center grid point of 

the cross shaped particle. 

3. If location       is in the exclusion zone of   different particles, the matching       cell 

in GRID is set to the value –  . Note that this marking is very useful to determine which 

particle moves are allowed. A particle move may be accepted if and only if the GRID 

value in its new considered location is –   (i.e. it is only in the exclusion zone of itself). 

4. If location       is not in the exclusion zone of any particle, the matching       cell in 

GRID is set to the value  . 
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A figurative example for the structure GRID is hereby described. Suppose our system is of size 

6x6 and composed of 4 particles in positions (1,6), (2,4), (4,2), (5,4), marked as 1, 2, 3 and 4 

respectively. The resulting array GRID is shown in FIG A1. We remind that our system has 

cyclic boundary condition on the y-axis, and closed boundary condition on the x-axis. 

0 -1 -1 -1 -2 1 6 

-1 -1 -1 -1 -2 -2 5 

-1 3 -3 -2 2 -2 4 

-1 -2 -2 -2 -1 -1 3 

-1 -2 4 -1 -2 -1 2 

0 -1 -1 -1 -1 -1    1 

6 5 4 3 2 1    

FIG A1 – An example of the GRID array for a simple 6x6 system with 4 particles. Particle locations are stressed in 

bold and grey background. 

 

In a system where the volume may change during the simulation, it is required to make the size 

of the GRID array variable, or at least make it large enough to contain all reasonable volume 

variations. Since our system may change volume only via the right x-axis boundary, its length on 

the y-axis is always a constant  . 

 

The second basic data structure is a representation of the system from the particle point of view. 

We have seen in GRID that each particle is tagged by an integer. We can use this integer tag as 

an index of a new 2D array of size     (  – the total particle number). This structure will 

henceforth be named LIST. For now it contains the location of each particle on the grid, but in a 

following refinement of the numerical scheme this data structure will be augmented. LIST is 

defined such that its (i,1) cell contains the   location of the i
th

 particle, and the (i,2) cell contains 

the   location of the i
th

 particle.  

 

Clearly the two data structures described above contain the same information, and each one 

could easily be built from the other. However, both have advantages and disadvantages which 

justify keeping both of them updated at all times. The GRID structure is a straightforward 

representation of the system, and eases the effort of checking whether a particle move is allowed 
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or not. On the other hand, LIST provides a concise description of all particle information, and 

quick access to a particular particle by its tag. 

 

Another system detail that must be accounted for is the representation of the mobile boundary 

location. When the boundary is a straight line (as in the partial grid point method), it is sufficient 

to note its   location only. However, when the mobile boundary curves and has a local   

position, we indicate this by a 1D array     . 

 

II. Initial conditions 

We now have all the data structures we need to establish a simple Monte-Carlo simulation 

scheme for the N3 system in isothermal-isobaric conditions, but we still require an initial 

condition. This can be achieved in various ways. The simplest of them is setting the system size 

and randomly placing particles until the required number   is met. This is however not a useful 

technique since it arrives at very low initial densities. We wish to explore the high density region 

of the Equation of State (EoS), near and beyond the phase transition, so we would like to have an 

initial condition with a rather high density. A method to achieve this goal is rather 

straightforward. We initially set a rather small system size (e.g. such that results in very high 

optimal packing density), and randomly place particles in it. If there is no room left to place 

more particles, we expand the system somewhat by furthering the mobile boundary. This 

algorithm recurs as long as needed to place all the   particles. The aforementioned initial 

condition method typically achieves densities in the vicinity of      (close to the density 

achieved by Random Sequential Adsorption procedures
[32]

), a reasonable initial condition for our 

uses.  

 

There are two other methods we employ to obtain a suitable initial condition. Both of them 

simulate particle movements to obtain high packing densities. The first method can be viewed as 

system quenching: We press the system (with a straight mobile boundary) in infinite pressure for 

a given time, arriving at densities close but lower than the random closest packing (RCP) 

density. A different technique is called random sequential adsorption diffusion (RSAD). We 

initially set the system size as to conform to a predefined system density  . Then we randomly 

place particles until the initial volume fills. When there is no more room to place more particles, 
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we let the particle diffuse, waiting for a permissible location to form. Every time a room for a 

new particle clears, it is immediately filled, until the final particle number   is met. These 

methods are used when we wish to start the simulation in very high densities (in excess of     ), 

e.g. for sanity checks of the simulator. 

 

III. Particle movement selection protocols  

The simplest approach to simulating particle movements in the N3 system will be henceforth 

referred to as “Random Selection” (RS). It may be thus described:  

1. Randomly select a particle and movement direction. We shall call this a particle move. 

This protocol amounts to randomizing two integers, a particle tag in the interval        , 

and a direction indicator in the range         (right, up, left, down respectively). 

2. Check if this particle move is allowed by the rigid-body potential of its neighbors (As 

aforementioned, the GRID value in the new particle position must be   ). If so, calculate 

the energetic cost of this movement. 

3. Try the particle move with the Metropolis criterion. If the move passes this criterion, 

perform it. 

4. Change the position of the mobile boundary if needed. 

5. Update the relevant data structures. 

 

Using the RS approach, it was quickly discovered that the method is insufficient to simulate high 

density systems. In step 2 of the algorithm we check if a certain random move is allowed by the 

moving particle’s neighbors. The move validity check is usually passed in low density states, 

when particles are far away from each other. In high density systems however, particles are 

located in high proximity and most random moves are forbidden. When randomly choosing a 

particle and move direction in a high density system, we usually try a move that has zero 

probability of acceptance, wasting computation time. Therefore, in high enough density, this 

protocol spends most of the time on attempting impossible particle moves, leading to low 

efficiency.  

 

A more efficient method for dense systems is clearly in order. The scheme we implemented lets 

the system choose random particle moves, but only from an updated set of moves that are known 
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to be allowed by the rigid-body potential. We refer to the enhanced method as “Rejection Free” 

(RF). The new approach requires an extension of our system data structure; we define a new 2D 

array which stores the current rigid-body allowed particle moves, named MOVES. This array 

shall store all the allowed particle moves in some order, and must contain information on the 

particle which moves and the movement direction. Therefore, the array MOVES is of size    , 

where   is the number of currently allowed particle moves. Array MOVES is defined such that 

its (m,1) cell contains the tag of the particle (      ) moving by utilizing the m
th

 move, and the 

(m,2) is the direction (     ) that this particle moves to. A complementary integer variable 

nMOVES holds the current total rigid-body allowed moves. To save computation time, we 

initially set the size of MOVES to     , the maximum number of allowed particle moves, 

avoiding repeated copying and reallocation of the array. To conclude the scheme we must 

connect the previous data structures to the new array. A practical way of doing it is augmenting 

the LIST array; its size grows from     to    . The new data cells contain references from the 

particle tag to the particle’s available moves. Cell (i,d+2) now contains the movement number 

that the particle utilizes in moving to direction   (     ). For example, Cell (1,3) contains the 

move number in MOVES for the movement of the 1
st
 particles to its right direction. If a move is 

not allowed due to rigid-body potential, its respective cell is set to zero. 

 

These definitions conclude the data structures used by our numerical scheme, but we must still 

overcome a significant hurdle to effectively implement the Rejection Free method. An efficient 

protocol for updating the data structures for each new configuration must be developed. In the 

RS method, the protocol of updating the arrays GRID and LIST in      is trivial. We simply 

“move” the particle one block in GRID, and set the LIST entry of its tag accordingly. The RF 

algorithm poses a more difficult problem. It is insufficient to update only the moving particles’ 

information, since its very movement may affect the allowed movements of its neighbors. 

Checking a particular movement direction for a particular particle is easy enough. One just has to 

check if the GRID cell in that direction has the value   . In order to achieve      efficiency, we 

need to apriori indicate which moves of which particles have to be checked for validity. The 

following figure shows an example of the points in GRID that have to be checked.  
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   * *    

  *   *   

 *     *  

*   X O   * 

 *     *  

  *   *   

   * *    

FIG A2 – GRID regions affected by particle movement. A particle in position “O” moves right to a new position 

“X”. The cells containing asterisks (accentuated with blue background) indicate locations where particle allowed 

movements are affected by this move. 

 

It can be shown that for every possible particle move, at most 14 adjacent particles are affected. 

Checking these 14 points around the moved particle results in an      updating protocol. Further 

refinement of this protocol is possible, since every one of those 14 supposed particle locations 

are affected differently by the movement. However, simply checking all move directions of all 

existent particles in these 14 locations provides a satisfactorily efficient updating protocol. 

 

The refined approach to particle movement simulation, the Rejection free algorithm, can be thus 

summarized: 

1. Randomly select a movement number. This is done by randomizing one integer, a move 

indicator   in the interval             . Extract from the chosen move which particle 

performs the movement, and to what direction. 

2. Calculate the energetic cost of this movement. The energy variation will typically be 

zero, unless the particle move occurs near the mobile boundary, changing the volume. 

3. Try the particle move with the Metropolis criterion. If the move passes this criterion, 

perform it. 

4. Update the data structures GRID and LIST for the moved particle. 

5. Update the permissible moves of the moved particle. These are accessible via the particle 

i’s data structure LIST(i,d+2). Update the total number of moves nMOVES. 

6. Check the 14 adjacent locations (visualized in FIG A2). If they contain particles, update 

their permissible moves. Update the total number of moves nMOVES. 

7. Change the position of the mobile boundary if needed. 
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IV. Time evolution of the system 

An important notion we must still make clear is the system time step. A system time step is 

defined as the time at which each particle attempts one movement to every permissible direction, 

in average. For example, in very low densities (ideal gas) containing   particles, one time steps 

would be    particle movements (  particles x 4 movement directions). Note that this does not 

mean that every particle must move 4 times to complete a time step, but only that there must be 

   movement attempts of any particle.  

 

In the Random Selection approach, a time step thus means    configuration samples. The true 

benefit of the Rejection Free approach is that a time step in this algorithm is just nMOVES 

configuration samples, which may be significantly less than   . This means that a RS time step 

takes a constant amount of real time to compute, regardless of the system density. A RF time 

step computation time is proportional to the total allowed number of moves, which decreases the 

higher the system density. We may now formalize the time advancement in terms of 

configurations sampled by the simulator: Each sampled configuration in the RS approach 

advances time by      [  ]  ; each sampled configuration in the RF approach advances time 

by      [         ]  . It may be more accurate to sample      from an exponential 

distribution with average      [         ]  , but this choice negligibly affects the long 

range time evolution. Since in high density systems          , typically          . 

 

V. Random Selection (RS) vs. Rejection Free (RF) algorithms 

The advantage of the Rejection Free approach is clear. Using it, we waste no computation 

resources on moves which are apriori impossible due to the rigid-body potential. At least in 

dense configurations, such an approach may greatly increase the number of configurations 

sampled for a given amount of real time. However, in low enough densities, the Random 

Selection algorithm may be faster. It is interesting to check in which region of the density map 

one approach surpasses the other in computational efficiency. In the following figure we show 

the total number of moves vs. the system density. Next to it displayed the real time taken for a 

constant amount of particle movement tries vs. the system density. 
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FIG A3 – Random Selection vs. Rejection Free algorithms. a) The number of allowed moves shows a sharp decrease 

when approaching the phase shift density of ~    . b) Rejection Free approach surpasses the Random Selection in 

terms of efficiency somewhat below the phase transition density, justifying its use in the super-cooled regime. 

 

From FIG A3 it can be shown that at rather low densities, there are many permissible particle 

moves, making the Random Selection approach more efficient. In high density systems, the 

number of permissible moves drops sharply as the neighboring particles grow closer. This is 

mirrored in improvement of the Rejection Free approach, finally surpassing the Random 

Selection approach somewhat below the density     . At higher still densities, the Rejection Free 

approach is clearly superior, gaining more efficiency as the total number of permissible moves 

decreases. 

 

VI. Data analysis 

In this work we generally separate between the actual thermodynamic simulation and the data 

analysis required to obtain most meaningful results. For maximum computational efficiency, the 

simulator is implemented in Fortran90. On the other hand, the data analysis is performed in post 

processing using Python. To allow post processing by an outside script, we export the LIST data 

structure from the simulator at different times into a text output file. Alongside the LIST array we 

export measurement times and volumes (or densities). This output represents “snapshots” of the 

system at known times, enabling both static and dynamic observables to be calculated in a 

straightforward manner. The times at which system snapshots are taken is predefined in the 

simulator. We usually choose a constant amount of snapshots in each time decade (20-35), a 

a) b) 
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choice which establishes logarithmic resolution in time. The measurement starts at time zero, 

whose density can be set by the user with the initial condition. Instead, a predefined 

“equilibration time” may be used to delay measurement commencement. These setting can be 

used to allow the system to reach equilibrium before starting to take measurement snapshots. 

 

In the chapter exploring cluster formation we have theoretically described a method of 

cataloguing clusters in a given system snapshot. The algorithm that was used to implement this 

method is described here. It starts with the first particle on the LIST data structure, and 

recursively jump to CW or CCW positions (defined in FIG 24). Verified neighboring particles 

are then located and added to the cluster list. CW and CCW formation are checked 

independently, and the larger is set to contain each particle. The recursion ends when all particles 

in the system are catalogued to clusters (or left as liquid). This algorithm ensures we end up with 

the same clusters no matter which particles are checked first.  
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 תקציר

. בחלוף הזמן, לנקודת ההתכה שלו, הוא עובר למצב הנקרא נוזל מקורר ביתר תחתכאשר מקררים חומר מ

לגביש מוצק יציב, או ייכנס למצב אמורפי הנקרא זכוכית. טבעו של מעבר הפאזה יהפוך הנוזל המקורר ביתר 

הזכוכיתי, החל עמוק במשטר הנוזלים המקוררים ביתר, עודו אחת השאלות הפתוחות בפיסיקה של חומר 

מן הרלקסציה צפוי להתבדר אחר שזסימולציה, מבמעובה.  מעבר זה לא ניתן לצפייה ישירה בניסוי או 

 .הפאזה מעברבנקודת 

 

כחלק מהניסיון ללמוד את מאפייני הנוזלים המקוררים ביתר, במיוחד עמוק במשטר זה, אנו מציעים לחקור 

בעל האזור האסור המורחב. ידוע כי מערכת זו, בה אין  N3-מודל פשוט יחסית של נוזל סריגי, מודל ה

לחקור את  על מנתאינטראקציות ארוכות טווח בין החלקיקים, נתקעת במצבים אמורפיים בצפיפויות גבוהות. 

יציבות  פחות נפח הינן-לחץ. שיטה זו נבחרה משום ששיטות שוות-בחרנו במימוש של סימולציה שוותהמודל, 

 ם ביתר.עבור נוזלים מקוררי

 

לחץ לנוזל סריגי כרוך בסיבוך מסוים, מאחר שאסור להפרשי הנפח בין שתי -המימוש של סימולטור שווה

ו את המודל בלחץ קבוע באמצעות שתי שיטות שונות, מקונפיגורציות דגומות להיות גדולים מדי. מימש

נה נמצאה כלא מתאימה . השיטה הראשוNies & Cifra, והשנייה לפי .Pendzig et alהראשונה בעקבות 

 אלמערכות גדולות, בעוד השנייה מצליחה יותר בתחום זה. דגימות נוזל מקורר ביתר הושגו בתחום לחצים של

היה זמין בעבר. לעומת זאת, הדגימות המקוררות ביתר בלחצים הגבוהים ביותר שהושגו עדיין רחוקות 

 מהנקודה הצפויה למעבר הפאזה לזכוכית האידיאלית.

 

הנוזל המקורר ביתר נחקר היכן שהדגימות זמינות. לא נמצאו סימנים להתקרבות לנקודת מעבר הפאזה 

דים כדוגמת פונקציות קורלציה דינאמיות. תהליך ההתגבשות )נוקלאציה וגדילת הגרעינים(, הזכוכיתי במד

נמצא כי תהליכים הומוגניים קבלת נוזלים מקוררים ביתר בלחץ גבוה, נחקר גם הוא. בשמגביל אותנו 

בעלי תפקיד חשוב ביצירה של גושים מוצקים. גושים אלה הינם מסועפים מטבעם, תצפית הם והטרוגניים 

  שעשויה להוביל לסטיות מתאוריית הנוקלאציה הקלאסית.
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