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Abstract

The Brauer group Br(k) of a field k is an important object of study
in number theory. A convenient condition to force the Brauer group
to be trivial is for k to be a quasi-algebraically closed field. Quasi-
algebraically closed fields are part of a more general notion of Ci fields,
introduced in Lang’s thesis in 1951. The goal of this talk is to prove
that finite fields Fq and function fields �k(t) over algebraically closed
fields are quasi-algebraically closed hence have trivial Brauer groups.

Disclaimer. These notes follow [2], [3], and [4] verbatim.

Motivation
Representation of groups as matrices. To understand a finite group G, we
can act it on a finite-dimensional vector space V , so that G is now represented
by matrices1 in GL(V ) 1 Upon a choice of basis. Two representations G ! GL(V ) and G ! GL(W )

give rise to a third representation G ! GL(V �W ) by:

g $ A 2 GL(V )

g $ B 2 GL(W )
=) g $

(
A 0

0 B

)
2 GL(V �W ):

Conversely, given a representation G ! GL(V ), we want to decompose it into
irreducible blocks2 2 These are called the irreducible

representations.
. This is provided by:

Theorem 1 (Maschke, Artin-Wedderburn). Let G be a finite group. Let k be
a field whose characteristic does not divide jGj. Then:

1. The group ring k [G] is isomorphic to the product of matrix rings Mni
(Di)

where Di are division algebras that are finite-dimensional over k .

2. The action of G on these k-vector spaces Mni
(Di) are precisely all the

irreducible representations of G on finite-dimensional k-vector spaces.

Example. The finite-dimensional division algebras over R are R, C, and H.
Consider R[Z=3Z]. This is a 3-dimensional R-vector space, so either:
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• R[Z=3Z] �= R� R� R or

• R[Z=3Z] �= R� C.

But R[Z=3Z] has only one R[Z=3Z]-invariant subspace of dimension 1 so
R[Z=3Z] �= R�C. Thus R[Z=3Z] has two irreducible representations over R.

Therefore, to classify the irreducible representations over k , one first classifies
the finite-dimensional division algebras over k . We store this information as
follows.

Define the Brauer group of a field k to be the set of (isomorphism classes of)
division algebras which are finite-dimensional over k and have center k . The
Brauer group of k is denoted Br(k).

For example, Br(C) = fCg and Br(R) = fR;Hg.

We define the group structure on Br(k) in the following manner. Given two
division algebras D1; D2 2 Br(k), it turns out that D1 
k D2

�= Md(D3)

for some D3 2 Br(k). Thus define the group multiplication in Br(k) by
[D1] � [D2] = [D3].

The Brauer group under field extension. Let k 0=k be a field extension.
Given a division algebra D 2 Br(k), the tensor product D 
k k

0 is isomorphic
to some matrix ring Md(D

0) with D0 2 Br(k 0). There are two consequences
to this.

First we have D 
k
�k �= Md(�k). This can be improved:3 3 See Corollary 2.2.6 in [1].there exists a Galois

field extension k 0=k for which D 
k k
0 �= Md(k

0).4 4 Such a field k 0 is said to split the
division algebra D.

Second, Br(�) can be viewed as a functor Fields ! Groups taking a morphism
of fields k ,! k 0 to

Br(k)! Br(k 0)

[D] 7! [D0];

where D0 is the division algebra for which D 
k k
0 �= Md(D

0). Thus Br(�) is
a functorial way to tell fields apart.

Finite-dimensional division algebra over its center has square dimension.
Let D 2 Br(k) be a division algebra. We claim that dimk D is a square number.
Under the natural injection D ,! D 
k

�k �= Md(�k), a k-basis f!1; :::; !rg for
D remains a �k-basis for D 
k

�k . Therefore:

dimk D = dim�k(D 
k
�k) = dim�k Md(�k) = d2:
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Ci Fields
Another way to tell fields apart is by a property. Define a field k to be:

• C0 if any degree d form5 5 By a form over k, we just mean a
homogeneous polynomial over k.

over k in n > 1 variables has a nontrivial zero.

• C1 if any degree d form over k in n > d1 variables has a nontrivial zero.

• Ci if any degree d form over k in n > d i variables has a nontrivial zero.

One can show that a field is C0 if and only if it is an algebraically closed field. 6 One direction is clear. Conversely,
we show that k 6= �k implies that k
is not C0. This will follow from
Lemma 4 below.
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Properties about C1 fields were discussed and known by Artin, Tsen, and others
under the label quasi-algebraically closed fields. Lang generalized this to the
notion of Ci fields.

Proposition 2. If a field k is C1, then Br(k) is trivial.

Proof. We prove the contrapositive. Let D 2 Br(k) be a division algebra of
dimension d2 > 1 over k . Let f!1; :::; !d2g be a k-basis for D. Let k 0=k be a
Galois field extension which splits D i.e. D
k k

0 �= Md(k
0). Then the injective

k-algebra homomorphism
' : D ,! D 
k k

0 �= Md(k
0)

sends a generic element x = x1!1 + � � � + xd2!d2 2 D to a d � d matrix [x ]

over k 0. Consider the polynomial
g(x1; :::; xd2) = det([x ])

in the variables x1; :::; xd2 .

Let Ai = [!i ] so g(x1; :::; xd2) = det(x1A1 + � � �+ xd2Ad2).
Claim 1. g is a homogeneous polynomial of degree d .
Proof. Clearly g(�x1; :::; �xd2) = �dg(x1; :::; xd2):

Claim 2. g depends on all the variables x1; :::; xd2 .
Proof. We have g(0; 0; :::; 0) = 0 and g(1; 0; :::; 0) = detA1 6= 0 since
!1 2 D is invertible and ' is a k-algebra homomorphism. So g depends
on the variable x1. Similarly for xi .

Claim 3. g 2 k [x1; :::; xd2 ].
Proof. Let � 2 Gal(k 0=k). By Skolem-Noether,
��g(x) = det(x1�(A1)+� � �+�(Ad2)) = det(x1BA1B

�1+� � �+xd2BAd2B�1) = g(x)

for some B 2 GLd(k
0).

If x 6= 0, det([x ]) 6= 0 so g only has the trivial zero. Therefore k is not C1. �
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Ci fields: examples
We now see that certain fields are C1, hence have trivial Brauer groups. This
section follows [4], section 3 of [3], and chapter 3 of [2] verbatim.

Proposition 3. Finite field F is C1. Chevalley-Warning theorem; proof
via Wikipedia

Proof. Let jFj = q = pk . Let f (x1; :::; xn) be a degree d form over F with
n > d . We show that f has a nontrivial zero x 2 Fn.

If i < q � 1 then ∑
x2F

x i = 0

so the sum over Fn of any polynomial in x1; :::; xn of degree less than n(q� 1)

also vanishes.

We have the indicator function

1� f (x)q�1 =

{
1 if x is a zero of f ;
0 else.

Thus
# zeros of f =

∑
x2Fn

(1� f (x)q�1) � 0 (mod p):

As 0 2 Fn is a zero of f , by above, f has a nontrivial zero. �

Our goal is now to show �k(t) is C1. This requires introducing the concept of
a normic form and a key theorem due to Lang and Nagata.

Let K=k be a finite field extension of degree n > 1 and consider a k-basis
f!1; :::; !ng for K. A generic element x 2 K can be written as

x = x1!1 + � � �+ xn!n:

Consider the left multiplication map lx : K ! K : y 7! xy . As a k-linear
map, lx has a matrix representation [lx ] with respect to our chosen basis. Its
determinant det[lx ] is then a homogeneous polynomial of degree n in the n

variables x1; :::; xn. This polynomial is called the norm form of K=k .

Example. Consider the field extension C=R. Viewing C as an R-vector space,
the map given by multiplication by x + iy has the matrix representation

[lx+iy ] =

(
x �y

y x

)
in the R-basis f1; ig. Therefore the norm form for C over R is

det

(
x �y

y x

)
= x2 + y2:
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More generally, a normic form over a field k is a homogeneous polynomial
� over k of degree d in n variables such that n = d and � has only the trivial
zero over k .

Example. For the field extension C=R, we can use the norm form N(x; y) =

x2+ y2 to generate more normic forms by plugging N into itself. For example,

N(N(x1; x2); N(y1; y2)) = (x21 + x22 )
2 + (y21 + y22 )

2

is a normic form. Therefore:

Lemma 4. Let k be a field that is not algebraically closed. Then there exist
normic forms over k of arbitrarily large degree. �

Theorem 5 (Lang-Nagata). Let k be a Ci field. Let f1; :::; fr be homogeneous
polynomials over k of degree d in n variables. If n > rd i , then they have a
nontrivial common zero in kn.

Proof. The i = 0 case corresponds to k being algebraically closed. This is
handled by classical algebraic geometry; see Proposition 7.2 of Chapter 1 in
Hartshorne.

Therefore, let us now assume that k is not algebraically closed.

Let i = 1. Let � be a normic form of degree e � r . Consider the form

�(1) = �(f1; :::; fr jf1; :::; fr j � � � jf1; :::; fr j0; :::; 0)

where after each slash we use new variables, and we insert as many complete
sets of f ’s as possible.

Thus �(1) has n
⌊
e
r

⌋
variables and has degree de � dr

(⌊
e
r

⌋
+ 1

)
. If k is C1,

we want
n
⌊e
r

⌋
> dr

(⌊e
r

⌋
+ 1

)
or

(n � dr)
⌊e
r

⌋
> dr:

Since k is C1, n � dr > 0, so the above inequality holds for large enough e.
Then �(1) has a nontrivial zero. Since � is normic, it is a common zero of all
the f ’s.

For i > 1, see Theorem 3.3.7 of [3] or Theorem 3.4 of [2]. �

Two consequences of this theorem are:

Theorem 6. Consequence 1 of Lang-NagataIf k is a Ci field, then every algebraic extension of k is also a Ci

field.
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Proof. (Lang) It suffices to prove the theorem for a finite extension K of k ,
since the coefficients of any given form lies in a finite extension.

Let K be a finite field extension of k of degree e. Let f!1; :::; !eg be a k-basis
of K. Let f (x) be a form over K of degree d and in n > d i variables. Introduce
new variables xi j with respect to our basis, such that

xi = xi1!1 + � � �+ xie!e

for i = 1; :::; n. Then

f (x) = f1(x)!1 + � � �+ fe(x)!e

for some forms fi of degree d in n variables. Since en > ed i , by the previous
theorem, these forms fi have a nontrivial common zero �x over K. This gives a
nontrivial zero x for f over K. �

Next we have

Theorem 7. Consequence 2 of Lang-NagataIf k is a Ci field, and K is an extension of k of finite transcendence
degree j , then K is a Ci+j field.

Proof. (Tsen, essentially) By the previous theorem, we are reduced to purely
transcendental extensions. By induction on j , we are reduced to the case
K = k(t). By homogeneity, it suffices to consider forms with coefficients in
the polynomial ring k [t].

Let f be a form of degree d in n > d i+1 variables with coefficients in k [t].
Introduce new variables xi j with

xi = xi0 + xi1t + xi2t
2 + � � �+ xist

s

where s will be chosen later. If r is the highest degree of the coefficients of f ,
we get

f (x) = f0(x) + f1(x)t + � � �+ fds+r (x)t
ds+r

where each form fi is of degree d in n(s + 1) variables.

We finish by applying Theorem 5 to these forms fi . For large enough s, the
inequality

n(s + 1) > d i(ds + r + 1)

holds, since this is the same as

(n � d i+1)s > d i(r + 1)� n:

Therefore the fi have a nontrivial common zero. This gives a nontrivial zero
to f over k(T ). �

As a corollary, since �k is a C0 field, we deduce that �k(t) is a C1 field. This is the original Tsen’s theorem.
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Final remarks
Lemma 8. See Lemma on page 379 of [4].Let k be a field complete under a non-archimedean valuation and
let its ring of integers o be compact. Let f be a form over F and suppose
that there exists a sequence of forms fi converging to f such that each fi has
a nontrivial zero in k . Then f also has a nontrivial zero in k .

Proof. We may assume all coefficients and zeros are integers i.e. elements of
o. By homogeneity, we may assume that some �i in a zero (�1; :::; �n) of fi is
a unit. We obtain in this way a collection of n-tuples in the Cartesian product
o � � � � � o. This product is compact, so our collection has an accumulation
point which will be our desired zero. It is nontrivial since each element of our
collection has at least one unit component. �

Theorem 9. See Theorem 8 of [4].Let F be a finite field. Then F((t)) is a C2 field.

Proof. Given the form f (x1; :::; xn) of degree d , n > d2 with integral coeffi-
cients, we must show it has a nontrivial zero. If we omit the coefficients of
f after a power of t, we obtain a form over F[t]. As the field F(t) is C2,
this form has a nontrivial zero. Doing this for each power of t we obtain an
approximating sequence of forms, each having a zero. We can apply the above
lemma to complete the proof. �

Following the analogy between function fields and number fields, Artin conjec-
tured that Qp is C2. This turned out to be false: Guy Terjanian constructed an
explicit counterexample over Q2 in 1966. However, Ax and Kochen managed
to prove the following surprising statement: for any integer d > 0, there exists
a finite set of primes P (d) such that the C2 property holds for forms of degree
d in Qp for all p 62 P (d).

The proof of the Ax-Kochen theorem uses model theory. For more on this, see
[3].
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