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wave vector of the photonic lattice of a period

. Four Gaussian lobes at these positions are
prvduiud by two-dimensional (2D) numeri-
cal simulations.” At larger angles there are
distinct, but weaker, diffraction features at
wave vectors (IG/2+mG/2) with indices
(Im) = (£1,£3), (£1,45 .and (£3,£1), (£5,£1)
o These weaker diffraction features are
double lobes, and the lobe splitting is directed
along the axis having the higher index. This
splitting cannot be explained with simple dif-
fraction theory. It can be e\plamud by Bloch
waves with wave vectors kg = [£+G/
&)] and [H(G/2 - 8),2G /2] where § is a small
fraction of G. The Bloch waves exhibit the
translation symmetry of the Bloch wave vec-
tor which modulates the local symmetry o
the cells. The observed Bloch wave vectors,
emitted photon transverse wave vectors, and
reciprocal lattice points are shown in Fig. 2(b).

The radiation patterns correspond to the
electric-field intensity in each unit cell being
180" out of phase with its neighbor cells. To
measure the phase relationship of the unit
cells, we have used a shearing polarization
interferometer” to record the sheared images
in Fig. 3. Images are shown for shears of 6, 0,
and 1 period. With a shear of 6 periods, the
images are completely separated and have
nearly equal intensities. With a shear of 0, the
two images recombine constructively to pro-
duce a single bright image. With a shear of
one period, the resultant image is very dark.
These data give direct confirmation that the
nearest neighbor unit cells are indeed 180" out
of phase.
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The coherent scattering of radiation in a pe-
riod dielectric structure leads to an electro-
magnetic dispersion relation that exhibits
}\hntmm band gaps, i.e., frequency intervals
in w h'Lh there are no allowed photonic
states. '~ There is considerable interest in the
modification of the electromagnetic disper-
sion relation and the opening of photonic
band gaps in such structures for fundamental
as well as practical reasons. Although theo-
retical calculations of photonic band struc-

ture have become somewhat sophisticated, it
has not been possible to experimentally mea-
sure the photon dispersion relation. Tradi-
tional microwave techniques have measured
the frequencies that define photonic band
gaps.” However, propagation characteristics
away from the gaps have not been measured.
Here, we present the experimentally mea-
sured photonic band structure, including the
dispersion properties, of a two-dimensional
(2D) array of dielectric rods, and we com pare
the results to theoretical calculations. The
measurements were performed using coher-
ent Ieru\\ ave transient spectroscopy
(COMITS)! in which electro-optically gener-
ated and measured electromagnetic tran-
sients are used to characterize thv complex
dielectric properties ot materials over a broad
bandwidth (15-140 GHz).

T'he configuration for COMITS experi-
ments is shown in Fig. 1. The transmitter and
receiver are exponentially tapered coplanar
stripline antennas photolithographically fab
ricated on silicon-on-sapphire. The silicon
epilayer is ion implanted to reduce the carrier
lifetime to less than 1 ps. Picosecond-dura-
tion current pulses are photoconductively
generated on the transmitter by 1.5-ps w ide,
527-nm wavelength optical pulses from a
mode-locked, pulse-compressed, and fre-
quency-doubled Nd:YLF laser. The electrical
pulse propagates along the stripline and i
radiated by the exponentially tapered an-
tenna. Hemispherical fused-silica lenses are
used to collimate the freely propagating tran-
sient from the transmitter and to focus the
transmitted signal onto the receiver. The op-
tical pulses are arranged in a pump-probe
configuration such that the transient voltage
induced on the receiver is ]Jhultlul11d1.IL'l1\'c]_\'
sampled as a function of delay between the
pump and probe.

In the study described here, we analyzed
a 2D dielectric array consisting of alumina
ceramic cylinders 0.74-mm diameter ar-
ranged in a square lattice of spacing 1.85 mm.
The sample can be arranged with the rod axis
parallel or perpendicular to the E-field, and
results were obtained with both configura-
tions. Time-domain wave forms are recorded
with and without the array in the beam path.
[he wave forms are numerically Fourier
transformed and the corresponding spectra
divided to obtain the frequency-dependent
complex (amplitude and phase) transmission
function of the sample. Gaps in theamplitude
spectrum reveal the frequencies at which
propagation is not allowed, in a fashion sim-
ilar to previous traditional microwave tech-
niques.” In addition, using the known
thickness of the dielectric array and the net
phase at each frequency point, an effective
dielectric constant of the array was derived.
Hence, the Li‘lf‘*Pl.']"‘*‘[i“n relation, fvs k, is estab-
lished. The experimentally determined dis-
persion relation for propagation along the

<10> direction, with the rods parallel to the
E-field, is shown in Fig. 2. The lines in the
figure are theoretical predictions for the dis-
persion relation, calculated using a plane
wave expansion. The agreement between
theory and experiment is excellent except for
an additional mode that is predicted but not

observed experimentally I\u.,m
polarizations, propagation direg
ﬁa['l'lplL‘\\11'[[1).,11]’.“]1‘]1‘- are pre mted,
In summary, we have me
persion relation of electroma
periodic dielectric arrays using el
cally generated transient radiation.
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QWE3 Fig. 3. Images ot lattice and unit
cells obtained with a shearing interferometer
for shears of (a) 6 lattice periods, (b) 0 lattice
periods, (c) 1 lattice period.
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QWE4 Fig. 1. Experimental configuration
for COMITS measurements.
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QWE4 Fig. 2. Photonic band structure of a
two-dimensional array of alumina cylinders
with the electric field parallel to the rod axes.
Dots are the experimental points; lines are
theoretical prediction.
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