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The structural and magnetic properties of ferromagnetic iron and nickel are computed using a plane-wave
basis set and the optimized pseudopotentials to study the effectiveness of these methods for magnetic systems
within the local-spin-density approximation. Although the pseudo wave functions deviate significantly from the
all-electron wave functions in the core region, the calculated structural and magnetic properties are in excellent
agreement with results obtained from all-electron calculations. The present results thus show that it is possible
to apply the optimized pseudopotentials to magnetic systems using the convenient formalism of plane-wave

basis sets.

I. INTRODUCTION

Recent progress in pseudopotential theoryl’3 has reduced
the size of the plane-wave basis set required to perform
local-density-functional calculations for a wide variety of
materials, including first-row and 3d elements. The opti-
mized pseudopotential proposed by Rappe et al.! has been
applied to solid copper, and an accurate description of its
structural properties was obtained with a small number of
plane-wave functions. Similar efficiency has been achieved
by Troullier and Martins,> Vanderbilt,> and others using a
variety of other pseudopotential generation schemes. How-
ever, application of these pseudopotentials has so far been
limited to nonmagnetic materials. In this work, we investi-
gate the effectiveness of the optimized pseudopotentials gen-
erated using the method of Ref. 1 for the calculation of the
properties of magnetic materials within the local-spin-
density approximation (LSDA).

The pseudopotential approximation is motivated by the
fact that the behavior of the valence electrons in the bonding
region primarily determines the electronic structure and the
structural properties of many materials. In a pseudopotential
formulation, the effect of the core electrons and that of the
nuclear potential are combined to form an effective ionic
pseudopotential. The pseudopotentials are commonly con-
structed, so that outside of a core region the valence pseudo
wave functions match the corresponding states derived from
an all-electron calculation, and inside this region they are
smooth functions. This formulation makes pseudopotential
calculations quite efficient, since the core orbitals do not
need to be recomputed. In addition, because the behavior of
the pseudo wave functions inside the core region need not
match that of the all-electron wave functions (see Fig. 1), the
number of plane waves required to describe them may be
drastically reduced.

In contrast to the properties mentioned above, the mag-
netic properties of transition metals originate from the d elec-
trons which have large wave-function amplitudes near the
core region. Accordingly, it would appear that it is important
to describe the behavior of the wave functions in the core
region as accurately as possible to obtain precise results. In
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previous investigations*> on magnetic materials with the
pseudopotential method, the pseudo wave function for the
localized state, in fact, deviates only slightly from the all-
electron wave function due to a small core radius employed.
Thus, it is not clear whether the optimized pseudopotential
which gives rise to a pseudo wave function that deviates
significantly from the all-electron wave function in the core
region can be applied successfully to magnetic materials.

Conventionally, the study of magnetic materials has been
performed using all-electron LSDA electronic-structure cal-
culations employing the linear augmented plane-wave
(LAPW), Korringa-Kohn-Rostoker (KKR), and linear
muffin-tin orbital (LMTO) methods. However, the basis sets
used in these methods have their limitations. In general, they
are complicated numerical functions, which makes them dif-
ficult to use for the calculation of forces, response functions,
and many-body effects going beyond the LSDA. For ex-
ample, unlike plane waves, such basis functions depend on
atomic positions, and therefore additional calculation of the
Pulay force terms is required to obtain atomic forces. Basis
sets, such as those used in Refs. 4 and 5, which mix localized
orbitals with plane waves encounter similar problems. If op-
timized pseudopotentials can provide accurate results for
magnetic materials, the simplicity of the plane-wave basis set
would make applications beyond total-energy calculations
much easier for these materials.
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FIG. 1. 3d radial wave functions of iron. The solid and broken
lines are the all-electron wave function and the pseudo wave func-
tion, respectively.

12 760 © 1995 The American Physical Society



52 AB INITIO OPTIMIZED PSEUDOPOTENTIAL CALCULATIONS ...

12761

TABLE I. Comparison of the 3d eigenvalues and the excitation energies at different configurations. Super-
and subscripts of each configuration denote the number of majority and minority spins, respectively. Values
in parentheses are the deviations from the all-electron results. (AE = all-electron, PS = pseudopotential, and

all energies are in Ry.)

Element configuration Majority spin

Minority spin

Exchange splitting Excitation energy

Fe’ (3d)3(4s)] AE -0.683
PS -0.689 (-0.006)

(3d)5(4s5)] AE  -0.645
PS -0.648 (-0.003)

(3d)3(4s)5(4p)y AE -0.784
PS -0.790 (-0.006)

Fe?* (3d)3(45)8 AE -2.023
PS -2.031 (-0.008)

3d)}(45)4 AE -2.480
PS -2.503 (-0.023)
Ni® (3d)3(4s)] AE -0.758

PS -0.760 (-0.002)

(3d)5(4s)] AE  -0.697
PS -0.697 (0.000)

(3d)3(45)(4p)s AE -0.878
PS  -0.881 (-0.003)

Ni%* (3d)3(45)5 AE -2.186
PS -2.191 (-0.005)

(3d)4(45)§ AE -2.664
PS -2.688 (-0.024)

10.433
-0.424 (0.009)

-0.520
-0.516 (0.004)

-0.507
-0.497 (0.010)

-1.758
-1.750 (0.008)

2.241
-2.252 (0.011)

-0.623
-0.621 (0.002)

20.722 (0.002)

-2.047
-2.048 (-0.001)

2.570
2,592 (-0.022)

0.250
0.265 (0.015)

0.126
0.132 (0.006)

0.188
0.199 (0.011)

0.277
0.292 (0.015)

0.211
0.211 (0.000)

0.266
0.281 (0.015)

1.832
1.833 (0.001)

0.239
0.251 (0.012)

2.468
2.484 (0.016)

0.135
0.139 (0.004)

-0.697 0 0.068
-0.697 (0.000) 0 (0) 0.069 (0.001)
-0.724 0.154 0.269

0.158 (0.004) 0.269 (0.000)

0.139
0.143 (0.004)

1.967
1.968 (0.001)

0.094
0.096 (0.002)

2.684
2.698 (0.014)

To investigate the effectiveness of the optimized pseudo-
potentials for magnetic systems, we have applied them to
isolated atoms and bulk solids of the prototypical transition
metals, iron and nickel. To compare the result with previous
works, the calculations are performed within the LSDA (Ref.
6) of density-functional theory,” even though the LSDA is
known to give an incorrect ground state for iron.®> The
exchange-correlation potential used is that of Ceperley and
Alder’ as parametrized by Perdew and Zunger.10 Since we
are considering the 3d elements, relativistic effects are ne-
glected.

In the remaining part of this paper, optimized pseudopo-
tentials are presented and applied to isolated atoms with
spin-polarized configurations in order to explore their valid-
ity (Sec. II). These pseudopotentials are then applied to bulk
Fe and Ni (Sec. III). The results of our electronic-structure
calculations are then compared to those previously obtained
with all-electron methods. Section IV summarizes the
present study.

II. THE OPTIMIZED PSEUDOPOTENTIAL AND ITS
APPLICATION TO ATOMS
The optimized norm-conserving pseudopotential' is gen-
erated by minimizing the quantity defined by

dq
<q (277)3 qzlllf((I)P

(2.1)

The first term in this expression is the kinetic energy of the
pseudo wave function (r), while the second term is the
portion of the kinetic energy of ¢(r) which is contained in
plane waves with wave vectors less than g.. Therefore, the
expression I(g.) represents the kinetic energy convergence
error, the amount of kinetic energy neglected by expressing
Y(r) in a truncated basis set of plane waves. Since it can be
shown! that the convergence of the total energy and that of
the kinetic energy behave similarly, /(g.) provides an excel-
lent estimate of the error in the computed total energy of
solids due to using a plane-wave cutoff at g...

1<qc>:f dr¢r*(r)(—v2)w<r>—fq
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FIG. 2. Logarithmic derivatives of d wave functions of iron at
r=2.2 au. (a) for the reference configuration and (b) for the
ground-state configuration. The solid lines are for all-electron wave
function and the broken lines are for pseudo wave function. In the
panel (b), thick lines and thin lines are for the majority- and
minority-spin states, respectively.

The optimized pseudopotential method seeks to make the
convergence error as small as possible by minimizing 7(q,)
subject to the constraints that (r) match the all-electron
wave function outside a real-space cutoff radius r, with
smoothness up to the second derivative of ¢(r) at r=r,, and
that (r) obeys the norm conservation condition.!! Although
the exact minimization can generate a pseudopotential with a
cusp at r., it can be effectively avoided by using a finite set
of basis functions to describe the atomic pseudo wave func-
tions. The parameter ¢g. in Eq. (2.1) determines the conver-
gence of the kinetic energy with respect to the plane-wave
cutoff energy in k-space calculations. In practical calcula-
tions, g, is increased until the convergence error I(g,) is
acceptable.

In order to obtain a soft and accurate pseudopotential, we
set r. of the 3d orbitals at 1.6 a.u. which is about twice the
distance from the nucleus to the peak position of the all-
electron wave function. This choice of r,. makes I(g,) less
than 1 mRy at g, = 8 and 8.7 a.u. for iron and nickel,
respectively. The reference configuration in the generation of
the pseudopotential is taken to be (3d)"(4s)'7°(4p)°%
without spin polarization, where n is the number of d elec-
trons in the neutral atom. The 3d pseudo wave function of
iron is depicted in Fig. 1. As a result of the large r., signifi-
cant deviation from the all-electron wave function can be
seen.

The 3d eigenvalues and the excitation energies for the
various spin-polarized configurations are listed in Table I.
Since there is a significant overlap between valence and core
charge densities, the latter is explicitly retained in the calcu-
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FIG. 3. The difference in the exchange-correlation potentials for
the majority- and minority-spin states of iron. The solid line is for
the all-electron result and the broken line is for the pseudopotential
result. The configuration is taken to be (3d)?(4s)i .

lation of the exchange-correlation energies and potentials us-
ing the scheme of Louie ef al.'? From this table, we see that
the one-electron eigenvalues and the excitation energies are
reproduced quite accurately with the pseudopotential in the
various spin-polarized configurations. The maximum error in
the magnitude of the exchange splitting, the difference be-
tween eigenvalues of majority and minority spins, is 6% of
the all-electron result. The deviations of the 4s and 4p eigen-
values are less than 1%.

As a further examination on the total-energy-related quan-
tities, we study the intra-atomic Coulomb correlation ener-

TABLE II. Comparison of the theoretical structural parameters of
bee iron and fec nickel. Ep,, is the plane-wave cutoff energy.

Cohesive
Method Lattice constant Bulk modulus  energy
(a.u.) (Mbar) (eV)
Fe Present work
E,, = 60 Ry 5.26 2.71 6.32
E,, = 64 Ry 5.26 2.48 6.46
E,, = 70 Ry 5.26 2.48 6.50
Pseudopotential 5.29 241 6.77
(Mixed basis) *
FLAPW ° 5.225*0.005 2404 6.56+0.03
Experiment 5.41 1.68-1.73 4.28
Ni  Present work
E,, = 64 Ry 6.56 2.31 6.99
E,, = 70 Ry 6.58 2.46 7.20
E,, =75 Ry 6.58 2.25 7.24
KKR © 6.55 2.27 5.70
Experiment 6.66 1.84 4.44

#Reference 5.
PReference 13.
“Reference 15.
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FIG. 4. Calculated band structure of bcc iron at lattice constant
a=5.25 a.u. Closed circles are for majority-spin states and open
circles are for minority-spin states. The Fermi level is indicated by
a horizontal line.

gies for the 3d orbitals, which characterize the magnetic
properties. The intra-atomic Coulomb correlation energy is
defined by E[(3d)"*']+E[(3d)""']—2E[(3d)"], where
E[(3d)"] is the total energy of an atom with n electrons in
the 3d orbitals. The values calculated using the pseudopoten-
tials are 1.134 Ry for the Fe?* ion and 1.246 Ry for the
Ni2* ion. These values are within 3% of the all-electron
values, which are 1.106 and 1.214 Ry, respectively.

The scattering properties of a pseudopotential provide an-
other important test of its transferability. Figure 2 shows the
logarithmic derivatives of the all-electron and pseudopoten-
tial 3d wave functions at the reference configuration and the
ground-state configuration for iron at r=2.2 a.u. In the
former case, no significant discrepancy from the all-electron
results can be seen within 0.5 Ry of the reference eigenval-
ues. The same accuracy is obtained in the fully polarized
state. These results indicate that the present pseudopotentials
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FIG. 5. Calculated band structure of fcc nickel at lattice constant
a=6.55 a.u. The Fermi level is indicated by a horizontal line. No-
tations are the same as those in Fig. 4.
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FIG. 6. Calculated density of states of bcc iron at lattice con-
stant a=5.25 a.u. The Fermi level is indicated by a broken line. The
upper (lower) panel is for the majority (minority) -spin states.

will be applicable to solid systems in a magnetic state. The
actual application for solids will be discussed in the next
section.

The exchange splitting, the energy difference between
electrons in the same orbital but with different spin orienta-
tions, in principle may arise from either a modification of the
shape of the wave functions or from a difference in the
exchange-correlation potential seen by the majority and mi-
nority spins. According to our calculations, spin polarization
does not affect the shape of the wave functions significantly.
The exchange splitting primarily results from the difference
between the exchange-correlation potentials.

In Fig. 3 we compare the exchange-correlation potential
differences between majority and minority spins given by the
pseudopotential and all-electron calculations. Because the
exchange-correlation potential is a simple function of the
electron density in LSDA, the potential difference is largest
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FIG. 7. Calculated density of states of fcc nickel at lattice con-
stant a=6.55 a.u. The Fermi level is indicated by a broken line. The
upper (lower) panel is for the majority (minority) -spin states.
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near the peak of the 3d wave function in both calculations.
The pseudopotential calculation yields an exchange-
correlation potential difference which is similar to that of the
all-electron calculation except for a shift in location due to
the shift in the valence pseudo-wave-function peak. We be-
lieve that the accuracy in the magnetic properties of the
present pseudopotential calculation derives from this similar-

ity.
III. BCC IRON AND FCC NICKEL

The total energies of bec iron and fcc nickel are calculated
with a plane-wave basis set as a function of volume. The
integration over occupied states are performed with 40 and
60 k points in the irreducible part of the bee and fce Brillouin
zones, respectively. This k-point sampling gives total energy
convergence to better than 1 mRy/atom. The partial-core-
correction scheme'? is used to speed up the computation of
the exchange-correlation energy. The core charge density is
replaced by a smooth function inside a radius of 0.6 a.u. This
partial-core approximation introduces an error which is less
than 1 mRy/atom in the spin-flip energy.

Table II shows the calculated structural parameters ob-
tained by fitting the total energies to the Murnaghan’s equa-
tion of state. The results indicate that cutoff energies of 64
and 70 Ry for iron and nickel, respectively, are large enough
to obtain converged results for the structural properties.
These results are also compared with the results of previous
calculations. Previous all-electron results vary by 1% or
more'? depending on the details of the calculation methods
used. The present results are within this range. The notable
difference in the cohesive energy of nickel may be due to the
muffin-tin approximation used in the KKR calculation. The
disagreement with experimental values for the cohesive en-
ergies is now well established to be a limitation of the
LSDA."

Figures 4 and 5 show the band structures calculated for Fe
and Ni using a plane-wave basis set with the cutoff energy of
64 Ry for both Fe and Ni. The convergence error of the
eigenvalues is about 0.01 eV for Fe and less than 0.03 eV for
Ni. The d-band widths of iron measured at the I' point are
1.47 and 1.99 eV for the majority and minority spins, respec-
tively. An extensive study of bcc Fe has been performed by
Hathaway ef al.'® using the full-potential linearized APW
(FLAPW) method. The discrepancy from their values of 1.50
and 1.99 eV (Ref. 16) is 0.03 eV or less. Further, our com-
puted exchange splittings at the I' point are 1.80 and 2.32 eV
for the I',5, and I", states, respectively, as compared to the
corresponding all-electron values of 1.83 and 2.32 eV.

The present calculation yields a d-band width for nickel
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measured at the I' point of 1.26 eV (1.20 eV) for the major-
ity (minority) spin state. The KKR method yields a d-band
width of 1.08 eV (1.15 eV).!® We calculate exchange split-
tings of 0.61 and 0.55 eV for I',s; and I'j,, respectively.
These values differ 0.01 and 0.10 eV, respectively, from the
KKR result. In comparison with the case of iron, the discrep-
ancy from the KKR result is rather large as seen in the co-
hesive energies.

The calculated densities of states shown in Figs. 6 and 7
are obtained as follows. First, exact diagonalizations are per-
formed on 8 X8 X8 mesh points in the first Brillouin zone.
The obtained eigenvalues are interpolated with the scheme
by Koelling and Wood'” on denser mesh points. Converged
estimates for the Fermi energy and the magnetic moment
were obtained by using a 20X 20X 20 division with errors of
less than 0.001 eV and 0.01 up/atom, respectively. The den-
sities of states in the figures are very similar to the results
obtained with the FLAPW method'? and the KKR method."”
The magnetic moment at the equilibrium volume is calcu-
lated from the density of states to be 2.07 wp/atom for bee
iron, which should be compared with the all-electron value
of 2.06 up/atom.'® Although some rather large discrepancies
are seen in the case of the electronic structure of nickel, the
agreement of the magnetic moments is excellent: Both meth-
ods yield the same value, 0.59 ug/atom.

IV. CONCLUSIONS

In this study, we have shown that optimized pseudopoten-
tials can be applied to transition metals to obtain structural,
electronic, and magnetic properties with high accuracy de-
spite a large difference in the amplitudes of the wave func-
tions in the core region. Replacing the wave functions by
optimized pseudo wave functions does not significantly af-
fect the magnetic properties, since the main effect is to shift
both the wave function and the exchange-correlation poten-
tial in real space while preserving the magnetic moment
value. The calculated cohesive, structural, and magnetic
properties of bec iron and fce nickel reproduce the results of
previous all-electron calculations.
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