Pseudopotential Design

Pseudopotentials have greatly improved efficiency of DFT calculations by reducing the number of electronic states to be treated in the KS calculations. This is achieved by assuming that the “core” electrons’ screening and scattering properties are generally invariant with the changes in the bonding nature of an atom. Our group has establshed means of improving transferability of these pseudopotentials across different atomic oxidation states and bonding environments. Here we provide a database of pseudopotentials in both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA) frameworks generated using the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) method and employing augmentation functions, which we call as designed non-local pseudopotentials.

Go to PZLDA PSP database
Go to PBEGGA PSP database
Go to comprehensive PSP database (under construction)
Doug Allan’s Atomic PSP Package Note PDF

Related Publications

  • W. A. Al-Saidi, E. J. Walter, and A. M. Rappe, “Optimized
    norm-conserving Hartree-Fock pseudopotentials for plane-wave
    calculations”, Phys. Rev. B 77, 075112 (1-10) (2008).
  • I. Grinberg, N. J. Ramer, and A. M. Rappe, “Quantitative
    criteria for transferable pseudopotentials in density functional
    theory”, Phys. Rev. B 63, 201102 (1-4) (2001).
  • I. Grinberg, N. J. Ramer, and A. M. Rappe, “Accurate
    of transition metal pseudopotentials for oxides”, AIP
    Conf. Proc. 582, 211-217 (2001).
  • I. Grinberg, N. J. Ramer, and A. M. Rappe, “Transferable
    relativistic Dirac-Slater pseudopotentials”, Phys. Rev. B 62,
    2311-2314 (2000).
  • N. J. Ramer and A. M. Rappe,
    “Designed Nonlocal Pseudopotentials for Enhanced Transferability”,
    Phys. Rev. B 59, 12471-12478 (1999).
  • S. P. Lewis, C. Wei, E. J. Mele, and A. M. Rappe,
    “Efficient scaling of calculations involving separable nonlocal
    pseudopotentials”, Phys. Rev. B 58, 3482-5 (1998).
  • T. Sasaki, A. M. Rappe, and S. G. Louie, “Ab initio
    optimized pseudopotential calculations of magnetic systems”, Phys. Rev. B 52, 12760-5 (1995).
  • T. Sasaki, A. M. Rappe, and S. G. Louie, “Application of the
    soft-core type pseudopotential to magnetic systems”, Sci. Rep. RITU
    A39, 37-8 (1993).
  • A. M. Rappe, A. dal Pino Jr. M. Needels and J. D. Joannopoulos,
    “Mixed-basis pseudopotential method applied to iterative diagonalization
    techniques”, Phys. Rev. B 46, 7353-7 (1992).
  • A. M. Rappe and J. D. Joannopoulos, “The design of convergent and
    transferable pseudopotentials”, Computer Simulation in Materials Science
    (Kluwer, the Netherlands, 1991), pp. 409-22.
  • A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos,
    “Optimized pseudopotentials”, Phys. Rev. B Rapid Comm. 41, 1227-1230
    (1990). PDF Erratum Phys. Rev. B 44, 13175 (1991).PDF