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Introduction

• For more complicated models it is often infeasible to derive moments of the posterior

distribution analytically and to calculate the marginal data density.

• Instead: use algorithm that enables us to generate draws from posterior distribution.

• Based on draws, calculate numerical approximations to moments of interest.

• Important algorithms: Gibbs sampler and Metropolis-Hastings:

– Gibbs sampler: for instance, for VARs

– Metropolis-Hastings: for instance, DSGE models

• Markov-Chain Monte Carlo (MCMC) algorithms: construct a Markov Chain with

ergodic distribution p(θ|Y ).
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Numerical Integration

• The posterior expectation of a function h(θ) is equal to the integral

IE[h(θ)|Y ] =

∫
h(θ)p(θ|Y )dθ (1)

• MC Integration:

(i) Requirements: It is possible to generate draws from the posterior density p(θ|Y ).

(ii) Steps:

1. For s = 1, . . . , nsim draw θ(s) from the posterior density p(θ|Y ).

2. Approximate the integral by

IE[h(θ)|Y ] ≈ 1

nsim

nsim∑
s=1

h(θ(s)) ¤ (2)

• Use Law of Large Numbers for h(θ(s)) and Central Limit Theorem to assess the ap-

proximation error.
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Importance Sampling

• Suppose it is not possible to generate draws from p(θ|Y ) on the computer, but one

can calculate the posterior density up to a constant, that is

q(θ|Y ) = cp(θ|Y ) (3)

and generate draws from a normalized density g(θ).

• Note that

IE[h(θ)|Y ] =

∫
h(θ)p(θ|Y )dθ

=

∫
h(θ)

p(θ|Y )

g(θ)
g(θ)dθ

=
1

c

∫
h(θ)

q(θ|Y )

g(θ)
g(θ)dθ (4)
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Importance Sampling

• Moreover, ∫
q(θ|Y )

g(θ)
g(θ)dθ = c

∫
p(θ|Y )dθ) = c (5)

• Define the importance ratios

w(θ) = q(θ|Y )/g(θ) (6)

• The above analysis suggests the following algorithm, known as importance sampling...
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Importance Sampling

• MC Integration through Importance Sampling:

(i) Requirements: Posterior density p(θ|Y ) can be evaluated up to a constant: q(θ|Y ) =

cp(θ|Y ). It is possible to generate draws from a normalized density g(θ). The draws

need not be independent.

(ii) Steps:

1. For s = 1, . . . , nsim draw θ(s) from the density g(θ).

2. Approximate the integral by

IE[h(θ)|Y ] ≈
1

nsim

∑nsim
s=1 w(θ(s))h(θ(s))

1
nsim

∑nsim
s=1 w(θ(s))

¤ (7)



Frank Schorfheide: Estimation and Evaluation of DSGE Models 7

Importance Sampling

• In principle the approximation error converges to zero for a large class of densities g(θ).

• The important question is: how fast?

• The algorithm will work well if g(θ) can be chosen such that

h(θ)w(θ)

stays roughly constant across draws θ(s).

• The convergence will be very slow if the importance ratios are very small with high

probability and very large with low probability.

• Consider CLT: If {yt} is strictly stationary and ergodic with IE[y1] = 0, IE[y2
1] = σ2 <

∞, and σ̄T = var(T−1/2
∑

yt) −→ σ̄2 < ∞, then

1√
T σ̄T

∑
yt

p−→ N (0, 1). ¤
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Data Augmentation Algorithms

• The data augmentation algorithm is based on two simple identities.

• The posterior identity is of the form

p(θ|Y ) =

∫

Z

p(θ|Y, Z)p(Z|Y )dZ (8)

• and the predictive identity is

p(Z|Y )

∫
p(Z|θ, Y )p(θ|Y )dθ (9)

• When substituting the latter identity into the former we obtain

p(θ|Y ) =

∫

Z

p(θ|Y, Z)

[∫

θ̃

p(Z|θ̃, Y )p(θ̃|Y )dθ̃

]
dZ

=

∫

θ̃

[∫

Z

p(θ|Y, Z)p(Z|Y, θ̃)dZ

]
p(θ̃|Y )dθ̃

=

∫

θ̃

K(θ|θ̃, Y )p(θ̃|Y )dθ̃ (10)
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Data Augmentation Algorithms

• Thus, p(θ|Y ) has to satisfy an integral equation. Let g(θ) be a normalized probability

density. Define the mapping

M [g(θ)] =

∫
K(θ|θ̃, Y )g(θ̃)dθ̃ (11)

M maps a density g(θ) into a density g′(θ). Let g(s+1)(θ) = M [g(s)(θ)].

• Under suitable regularity conditions (see for instance Tanner, 1996)

(i) The fixed point g∗(θ) of the mapping M [g(θ)] = g(θ) is unique.

(ii) The mapping M is a contraction mapping and the sequence of densities {g(s)(θ)}

converges to the fixed point g∗(θ)

∫
|g(s)(θ)− g∗(θ)|dθ −→ 0

as s −→∞. ¤
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Data Augmentation Algorithms

• Thus, if one applies the mapping M to some initial density g(0)(θ) one converges

eventually to the solution of the integral equation.

• Data Augmentation Algorithm

(i) Requirements: It is easily possible to generate draws from p(Z|θ, Y ) and p(θ|Z, Y ).

(ii) The following two steps are repeated for s = 1, . . . , nsim.

1. Generate a sample Z1, . . . , Zm from the current approximation to p(Z|Y ) as fol-

lows: For i = 1, . . . , m draw θ(i) from p(s)(θ|Y ) and draw Z(i) from p(Z|θ(i), Y ).

2. Use the posterior identity to update from p(s)(θ|Y ) to p(s+1)(θ|Y ):

p(s+1)(θ|Y ) =
1

m

m∑
i=1

p(θ|Z(i), Y )

A draw of θ can be easily generated by drawing an i = 1, . . . , m with uniform

probability 1/m and a θ from p(θ|Z(i), Y )
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Data Augmentation Algorithms

• For large m and large nsim the mixture p(s+1)(θ|Y ) with provide a close approximation

of p(θ|Y ). In many cases we are not so much interested in the density p(θ|Y ) but

rather in random draws from this density. Choosing m = 1 leads to chained data

augmentation.

• Chained Data Augmentation Algorithm

(i) Requirements: It is easily possible to generate draws from p(Z|θ, Y ) and p(θ|Z, Y ).

(ii) The following two steps are repeated for s = 1, . . . , nsim.

1. Draw Z(s+1) from the density p(Z|θ(s), Y ).

2. Draw θ(s) from the density p(θ|Z(s+1), Y ). ¤
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Data Augmentation Algorithms

• The sequence {θ(s)}nsim
s=1 in the chained data augmentation forms a Markov Chain with

transition Kernel

K(θ|θ̃, Y ) =

∫
p(θ|Y, Z)p(Z|Y, θ̃)dZ (12)

• The stationary distribution of this Markov chain has to satisfy the integral equation

p(θ|Y ) =

∫
K(θ|θ̃, Y )p(θ̃|Y )dθ̃ (13)

• Hence for large s, {θ(s)}nsim
s=1 are draws from the posterior distribution p(θ|Y ). More-

over, the Z’s obtained from the chained data augmentation algorithm are draws from

p(Z|Y ). This Fact is exploited by the Gibbs Sampler.
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Data Augmentation Algorithms

• Gibbs Sampler

(i) Requirements: Suppose the parameter vector θ can be partitioned into θ = [θ′1, . . . , θ
′
m]′.

For each i it is possible to generate draws of θi from the conditional distribution

p(θi|θ−i, Y ) where θ−i denotes the vector θ without the partition θi.

(ii) The following steps are repeated for s = 1, . . . , nsim.

– Draw θ
(s+1)
1 from the density p(θ1|θ(s)

2 , . . . , θ
(s)
m , Y ).

– Draw θ
(s+1)
2 from the density p(θ2|θ(s+1)

1 , θ
(s)
3 , . . . , θ

(s)
m , Y ).

– · · ·

– Draw θ
(s+1)
m from the density p(θm|θ(s+1)

1 , . . . , θ
(s+1)
m−1 , Y ). ¤
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Data Augmentation Algorithms

• For large s we obtain dependent draws from the posterior distribution of θ. It is

common practice to discard the initial draws.

• Approximate the mean and covariance matrix of θ by Monte Carlo averages:

ÎE[θ] =
1

nsim − n0

nsim∑
s=n0+1

θ(s).
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Example: Gibbs Sampler

• Simple example: suppose our posterior is of the form



θ1

θ2


 ∼ N







θ̃1

θ̃2


 ,




Ṽ11 Ṽ12

Ṽ22





 .

• In practice the posterior mean θ̃ and variance Ṽ are functions of data and prior.

• Let’s assume: 


θ1

θ2


 ∼ N







0.5

−0.5


 ,




1 0.5

1





 .
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Example: Gibbs Sampler

• In our example the conditional distributions are...

• Distribution of θ1|θ2:

N
(

µ1 + σ12σ
−1
22 (θ2 − µ2) , σ11 − σ12σ

−1
22 σ21

)

• Distribution of θ2|θ1:

N
(

µ2 + σ21σ
−1
11 (θ1 − µ1) , σ22 − σ21σ

−1
11 σ12

)

• We consider cumulative means of θ draws... (θ
(0)
2 = 10)

• and autocorrelation function of θ draws.

(Figures)
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Metropolis-Hastings Algorithm

• Consider an m-state Markov process xt.

• The possible states are denoted by S = {s1, . . . , sm}.

• Transition probabilities:

P =




p11 · · · p1m

... . . . ...

pm1 · · · pmm




(14)

where pij is the probability of moving from state i to state j.

• Let w(t) = [w1(t), . . . , wm(t)] be a 1×m vector of probabilities of xt being in state i

in period t.

• The corresponding probabilities for period t + 1 are w(t + 1) = w(t)P .
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Metropolis-Hastings Algorithm

• π is equilibrium distribution if π = πP .

• A Markov chain is reversible if probability of i 7→ j is the same as j 7→ i:

πipij = πjpji

• A chain that is reversible has an equilibrium distribution π because

(πP )j =

m∑
i=1

πipij =

m∑
i=1

πjpji = πj

m∑
i=1

pji = πj (15)

• To sample from the equilibrium distribution, one can start the chain from any w(0)

until it settles down to the equilibrium distribution.
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Metropolis-Hastings Algorithm

• Idea of Metropolis algorithm: construct transition matrix P from a transition matrix

Q such that P has desired equilibrium distribution π.

• Why: we don’t know how to draw from the posterior p(θ|Y T ) (corresponds to π in our

example), but we know how to draw from a normal distribution (corresponds to using

Q).

• Time t iteration: suppose we are in state si Based on Q draw a proposed state sj.

– With probability αij proposed state is accepted. Move from si to sj.

– With probability 1− αij stay in state si.

• Choice of αij?
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Metropolis-Hastings Algorithm

• Choose αij = min [1, πj/πi].

• The resulting chain is reversible and has equilibrium distribution π:

πipij = πi min[1, πj/πi]qij

= min[πi, πj]qij

= min[πi, πj]qji

= πjpji (16)

• Weak regularity conditions on Q can ensure that the equilibrium distribution π is

unique and that the chain is convergent.

• These ideas can be generalized to the continuous case.
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Metropolis-Hastings Algorithm

• Special Case: Random Walk Metropolis Algorithm

– Initialization: Choose a θ(0) to initialize the chain.

– Step s1: Draw candidate parameter vector ψ from a jumping distribution Js(ψ|θ(s−1)).

Example: draw ψ from the distribution

ψ ∼ N (θ(s−1), c2I)

where I is the identity matrix and c is a scalar tuning parameter for the algorithm.

– Step s2:

θ(s) =





ψ with probability min
{

1, p(ψ|Y )

p(θ(s−1)|Y )

}

θ(s−1) otherwise

We refer to θ(s) = θ(s−1) as “rejection” of the proposed step.

Execute steps s1 and s2 for s = 1, . . . , nsim.
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Metropolis-Hastings Algorithm

• We saw: the sequence of draws {θ(s)} is serially correlated.

• It typically satisfies a weak law of large numbers, that is,

ÎE[θ|Y T ] =
1

ns

ns∑
s=1

θ(s) p−→
∫

θp(θ|Y T )dθ. (17)

• Under some regularity conditions it also satisfies a central limit theorem, meaning:

Newey-West standard errors could be used to get numerical standard errors.

• Of course we can transform θ(s) and evaluate:

ÎE[g(θ)|Y T ] =
1

ns

ns∑
s=1

g(θ(s))
p?−→

∫
g(θ)p(θ|Y T )dθ. (18)

Use for: standard deviations, impulse response functions, etc...

• Univariate confidence intervals (connected): (i) sort draws, (ii) search for shortest

interval that contains a pre-specified fraction, say 95 percent, of the draws.
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Convergence?

• Issue: speed of convergence of Markov Chain and Monte Carlo averages.

• Informal assessment of convergence: plot

1

ns

ns∑
s=1

g(θ(s)) (19)

as a function of ns.

• Start Markov-Chain at over-dispersed (i.e., extreme) values of θ and check whether

different runs of the chain settle to the same distribution.

• Huge literature, here some references: Gelman, Carlin, Stern and Rubin (1995), Tanner

(1996), Geweke (1999).
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Example: Metropolis-Hastings Algorithm

• Simple example: suppose our posterior is a mixture of normals of the form




θ1

θ2


 ∼





N







θ̃11

θ̃12


 ,




Ṽ11 Ṽ12

Ṽ22





 with probability 1

2

N







θ̃21

θ̃22


 ,




Ṽ11 Ṽ12

Ṽ22





 with probability 1

2
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Example: Metropolis-Hastings Algorithm

• Simple example: suppose our posterior is a mixture of normals of the form




θ1

θ2


 ∼





N







1.5

1.5


 ,




1 0.5

1





 with probability 1

2

N






−1.5

−1.5


 ,




1 0.5

1





 with probability 1

2

• Configuration of Algorithm

– Starting values: θ
(1)
1 = 10, θ

(1)
2 = −10

– Proposal density: N (θ(s−1), 0.12 ∗ I)

– Number of draws: 2000

• Small steps... Rejection rate: 8.45 %.
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Example: Metropolis-Hastings Algorithm

• Simple example: suppose our posterior is a mixture of normals of the form




θ1

θ2


 ∼





N







1.5

1.5


 ,




1 0.5

1





 with probability 1

2

N






−1.5

−1.5


 ,




1 0.5

1





 with probability 1

2

• Configuration of Algorithm

– Starting values: θ
(1)
1 = 10, θ

(1)
2 = −10

– Proposal density: N (θ(s−1), 12 ∗ I)

– Number of draws: 2000

• Mid-size steps... Rejection rate: 45.25 %.
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Example: Metropolis-Hastings Algorithm

• Simple example: suppose our posterior is a mixture of normals of the form




θ1

θ2


 ∼





N







1.5

1.5


 ,




1 0.5

1





 with probability 1

2

N






−1.5

−1.5


 ,




1 0.5

1





 with probability 1

2

• Configuration of Algorithm

– Starting values: θ
(1)
1 = 10, θ

(1)
2 = −10

– Proposal density: N (θ(s−1), 82 ∗ I)

– Number of draws: 2000

• Large steps... Rejection rate: 95.50 %.
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Example: Metropolis-Hastings Algorithm

• Move modes of mixture further apart...




θ1

θ2


 ∼





N







3

3


 ,




1 0.5

1





 with probability 1

2

N






−3

−3


 ,




1 0.5

1





 with probability 1

2

• Configuration of Algorithm

– Starting values: θ
(1)
1 = 10, θ

(1)
2 = −10

– Proposal density: N (θ(s−1), 12 ∗ I)

– Number of draws: 2000

• Rejection rate: 48.35 %.
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Example: Metropolis-Hastings Algorithm

• Simple example: increase number of draws...




θ1

θ2


 ∼





N







3

3


 ,




1 0.5

1





 with probability 1

2

N






−3

−3


 ,




1 0.5

1





 with probability 1

2

• Configuration of Algorithm

– Starting values: θ
(1)
1 = 10, θ

(1)
2 = 10

– Proposal density: N (θ(s−1), 12 ∗ I)

– Number of draws: 20000

• Rejection rate: 48.82 %.










