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Introduction

e For more complicated models it is often infeasible to derive moments of the posterior

distribution analytically and to calculate the marginal data density:.
e Instead: use algorithm that enables us to generate draws from posterior distribution.
e Based on draws, calculate numerical approximations to moments of interest.
e Important algorithms: Gibbs sampler and Metropolis-Hastings:

— Gibbs sampler: for instance, for VARs

— Metropolis-Hastings: for instance, DSGE models

e Markov-Chain Monte Carlo (MCMC) algorithms: construct a Markov Chain with

ergodic distribution p(@|Y).



Frank Schorfheide: Estimation and Evaluation of DSGE Models 3

Numerical Integration

e The posterior expectation of a function h(6) is equal to the integral
EO)1Y) = [ hO)w(o]y)do (1)

e MC Integration:
(i) Requirements: It is possible to generate draws from the posterior density p(0]Y).
(ii) Steps:
1. For s = 1,..., ng, draw 0 from the posterior density p(A|Y).

2. Approximate the integral by

Eh®)Y) ~—— Y ne) O 2)

e Use Law of Large Numbers for h((9<5)) and Central Limit Theorem to assess the ap-

proximation error.
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Importance Sampling

e Suppose it is not possible to generate draws from p(6|Y) on the computer, but one

can calculate the posterior density up to a constant, that is
q(0Y) = cp(0]Y) (3)
and generate draws from a normalized density ¢(@).

e Note that

Eh@)[Y] = / h(O)p(6]Y)do
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Importance Sampling

e Moreover,

/ C—’(gig)gw)de —c [ vlory i)~ (5)

e Define the importance ratios
w(0) = q(0]Y)/g(0) (6)

e The above analysis suggests the following algorithm, known as importance sampling...
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Importance Sampling

e MC Integration through Importance Sampling;:

(i) Requirements: Posterior density p(6]Y) can be evaluated up to a constant: g(6|Y) =
cp(0]Y). Tt is possible to generate draws from a normalized density g(#). The draws
need not be independent.

(ii) Steps:

1. For s = 1,..., ng, draw 0% from the density g(f).

2. Approximate the integral by

o o w(0™)h(0™)
s=1

Nsim

0 (7)
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Importance Sampling
e In principle the approximation error converges to zero for a large class of densities g(#).
e The important question is: how fast?
e The algorithm will work well if g(#) can be chosen such that
h(0)w(0)
stays roughly constant across draws 6.

e The convergence will be very slow if the importance ratios are very small with high

probability and very large with low probability.
e Consider CLT: If {y,} is strictly stationary and ergodic with IE[y;] = 0, IE[y?] = 02 <
00, and o7 = var(T~% 3 y,) — &% < oo, then

1
T > oy N(0,1). O
T
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Data Augmentation Algorithms
e The data augmentation algorithm is based on two simple identities.
e The posterior identity is of the form
p61Y) = [ D6l 2)p(21Y)az 5)
e and the predictive identity is
pZIY) [ 5210,V )p(oIY )it 9)
e When substituting the latter identity into the former we obtain
po) = [ o 2) | [0, )p(0)a8| az
= /9 UZ p(0Y, Z)p(ZY, é)dZ] p(0Y)do

_ / K016,V )p(0]Y)d0 (10)
0
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Data Augmentation Algorithms

e Thus, p(f|Y) has to satisfy an integral equation. Let g(#) be a normalized probability

_ / K (016, Y )g(8)dd (1)

M maps a density g(0) into a density ¢'(6). Let g(s11)(0) = M|g(s(0)].

density. Define the mapping

e Under suitable regularity conditions (see for instance Tanner, 1996)
(i) The fixed point g*(#) of the mapping M|g(#)] = g(0) is unique.
(ii) The mapping M is a contraction mapping and the sequence of densities {g)(0)}

converges to the fixed point ¢g*(0)

/\g 0)|dd — 0

as s — 00. [
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Data Augmentation Algorithms

o Thus, if one applies the mapping M to some initial density g((f)) one converges

eventually to the solution of the integral equation.

e Data Augmentation Algorithm
(i) Requirements: It is easily possible to generate draws from p(Z|6,Y) and p(0|Z,Y).
(ii) The following two steps are repeated for s = 1,. .. ngpn.
1. Generate a sample Z1, ..., Z,, from the current approximation to p(Z|Y") as fol-
lows: Fori =1,...,mdraw 6; from p(,)(0|Y") and draw Z;) from p(Z|0;),Y").

2. Use the posterior identity to update from p)(0|Y) to pre1y(0]Y):

P(s+1) 9’Y Zp 9|Z
A draw of 6 can be easily generated by drawing an ¢ = 1, ..., m with uniform

probability 1/m and a ¢ from p(0|Z;),Y")
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Data Augmentation Algorithms

e For large m and large ng,, the mixture p(,,1)(0|Y") with provide a close approximation
of p(A]Y). In many cases we are not so much interested in the density p(f|Y") but
rather in random draws from this density. Choosing m = 1 leads to chained data

augmentation.

e Chained Data Augmentation Algorithm
(i) Requirements: It is easily possible to generate draws from p(Z|6,Y) and p(0|Z,Y).
(ii) The following two steps are repeated for s = 1,. .. ngp.
1. Draw Z©*Y from the density p(Z]0©),Y).

2. Draw 6 from the density p(6|Z¢+DY). O
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Data Augmentation Algorithms

e The sequence {6*)}"5" in the chained data augmentation forms a Markov Chain with

transition Kernel

K(6]6,Y) = / pO|Y, Z)p(Z|Y,0)dZ (12)

e The stationary distribution of this Markov chain has to satisfy the integral equation

~

p(OY) = / K010, Y)p(0]Y)dd (13)

e Hence for large s, {#(*)}"*"* are draws from the posterior distribution p(#|Y’). More-

over, the Z’s obtained from the chained data augmentation algorithm are draws from

p(Z]Y). This Fact is exploited by the Gibbs Sampler.
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Data Augmentation Algorithms

e Gibbs Sampler
(i) Requirements: Suppose the parameter vector 6 can be partitioned into 8 = [67,...,0! ]’
For each 1 it is possible to generate draws of #; from the conditional distribution
p(0;|0_;,Y) where 6_; denotes the vector 6 without the partition 6;.
(ii) The following steps are repeated for s = 1,.. ., Ngim.
— Draw 95‘9“) from the density p(01\9§8), e 9,(5), Y).
— Draw 0§5+1) from the density p(@2\0§‘9+1>, (9:())5), 0% Y).

— Draw QSH) from the density p(9m19§5“>, o QSE), Y). O
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Data Augmentation Algorithms

e For large s we obtain dependent draws from the posterior distribution of 6. It is

common practice to discard the initial draws.

e Approximate the mean and covariance matrix of # by Monte Carlo averages:

Nsim

E[0) = — Z L)

s=np+1
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Example: (Gibbs Sampler

e Simple example: suppose our posterior is of the form

91 61 ‘711 ‘712
Y N )

02 0 Vs .

e In practice the posterior mean 6 and variance V are functions of data and prior.

e [ct’s assume:
0, 0.5 1 0.5




Frank Schorfheide: Estimation and Evaluation of DSGE Models

Example: (Gibbs Sampler

e In our example the conditional distributions are...

e Distribution of 6;|6y:
N(Ml + 01202_21(92 — [2) , 011 — 0120221021)
e Distribution of 6|6;:

N(M2 + 02101_11(91 — 1), 099 — 02101_11012>

0 _ 4

e We consider cumulative means of 6 draws... (6" = 10)

e and autocorrelation function of 8 draws.

(Figures)

16
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Metropolis-Hastings Algorithm

e Consider an m-state Markov process ;.
e The possible states are denoted by S = {s1,..., s}

e Transition probabilities:

(pu plm\

p=| . . (14)

\pml pmm)

where p;; is the probability of moving from state ¢ to state j.

o Let w(t) = [wi(t),...,wy(t)] be al x m vector of probabilities of x; being in state 4

in period t.

e The corresponding probabilities for period ¢ + 1 are w(t + 1) = w(t)P.
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Metropolis-Hastings Algorithm
e 7 is equilibrium distribution if 7 = 7w P.
e A Markov chain is reversible if probability of 2 — 5 is the same as 7 +— i:
TiPij = T;Pji
e A chain that is reversible has an equilibrium distribution © because
(Wp)j:iﬂmz‘j:iﬁjﬁjizﬂjimi:% (15)
i=1 i=1 i=1

e To sample from the equilibrium distribution, one can start the chain from any w(0)

until it settles down to the equilibrium distribution.
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Metropolis-Hastings Algorithm

e [dea of Metropolis algorithm: construct transition matrix P from a transition matrix

() such that P has desired equilibrium distribution 7.

e Why: we don’t know how to draw from the posterior p(9|Y™?) (corresponds to 7 in our

example), but we know how to draw from a normal distribution (corresponds to using

Q).
e Time ¢ iteration: suppose we are in state s; Based on () draw a proposed state s;.

— With probability «;; proposed state is accepted. Move from s; to s;.

— With probability 1 — a;; stay in state s;.

e Choice of ;7
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Metropolis-Hastings Algorithm

e Choose o; = min [1, 7, /m;].
e The resulting chain is reversible and has equilibrium distribution 7
mipi; = mmin|l, 7 /mq;;
= min|m;, 7;|q;
= min[m,ﬂj]qﬁ
= Tipji (16)
e Weak regularity conditions on () can ensure that the equilibrium distribution 7 is

unique and that the chain is convergent.

e These ideas can be generalized to the continuous case.
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Metropolis-Hastings Algorithm

e Special Case: Random Walk Metropolis Algorithm

— Initialization: Choose a 89 to initialize the chain.
— Step s1: Draw candidate parameter vector 1) from a jumping distribution J,(¢0|6~1).

Example: draw ¢ from the distribution
W~ N(OF Y 2D
where [ is the identity matrix and c is a scalar tuning parameter for the algorithm.

— Step so:

5(5) _ (0 with probability min {1, %}

061 otherwise

We refer to 65) = 9~ as “rejection” of the proposed step.

Execute steps s1 and sy for s =1, ..., ngm.
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Metropolis-Hastings Algorithm
e We saw: the sequence of draws {6®)} is serially correlated.
e [t typically satisfies a weak law of large numbers, that is,
5 1 &
ERYT =—>) 6 = /9 1Y T)do. 17
oY) = 2320 2 [ aploy) (17)

e Under some regularity conditions it also satisfies a central limit theorem, meaning:

Newey-West standard errors could be used to get numerical standard errors.
e Of course we can transform 8 and evaluate:
" T 1 T\d
Elg(0)]Y"] = )p(0]Y™)d (18)
Use for: standard deviations, impulse response functions, etc...

e Univariate confidence intervals (connected): (i) sort draws, (ii) search for shortest

interval that contains a pre-specified fraction, say 95 percent, of the draws.
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Convergence?

e [ssue: speed of convergence of Markov Chain and Monte Carlo averages.

e [nformal assessment of convergence: plot

LY g0 (19

s=1

as a function of ng.

e Start Markov-Chain at over-dispersed (i.e., extreme) values of 6 and check whether

different runs of the chain settle to the same distribution.

e Huge literature, here some references: Gelman, Carlin, Stern and Rubin (1995), Tanner

(1996), Geweke (1999).
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Example: Metropolis-Hastings Algorithm

e Simple example: suppose our posterior is a mixture of normals of the form

( - .-
N ( 011 Vii Vig
012 Vi |

with probability %

N
(92 (é21 ‘711 ‘712
\

with probability %

N NN T

922 ‘722 |
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Example: Metropolis-Hastings Algorithm

e Simple example: suppose our posterior is a mixture of normals of the form

( / B T B T \
1.5 1 0.5

S N : with probability %

1.5 1 )

NN IS Y
6, ( —1.5 1 0.5
\

- - N : with probability
\ —1.5 1

e Configuration of Algorithm
— Starting values: 8%1) = 10, 9;” =—10
— Proposal density: N0~V 0.12 % T)

— Number of draws: 2000

e Small steps... Rejection rate: 8.45 %.
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Example: Metropolis-Hastings Algorithm

e Simple example: suppose our posterior is a mixture of normals of the form

( / B T B T \
1.5 1 0.5

S N : with probability %

1.5 1 )

NN IS Y
6, ( —1.5 1 0.5
\

- - N : with probability
\ —1.5 1

e Configuration of Algorithm
— Starting values: 8%1) = 10, 9;” =—10
— Proposal density: A(0~1 12 x T)
— Number of draws: 2000

e Mid-size steps... Rejection rate: 45.25 %.
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Example: Metropolis-Hastings Algorithm

e Simple example: suppose our posterior is a mixture of normals of the form

( / B T B T \
1.5 1 0.5

S N : with probability %

1.5 1 )

NN IS Y
6, ( —1.5 1 0.5
\

- - N : with probability
\ —1.5 1

e Configuration of Algorithm
— Starting values: 8%1) = 10, 9;” =—10
— Proposal density: A(0~1, 82 x T)

— Number of draws: 2000

e Large steps... Rejection rate: 95.50 %.
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Example: Metropolis-Hastings Algorithm

e Move modes of mixture further apart...

( (—3- _10.5_\

- N : with probability %

- - N , with probability

\

ALt
05 (—3 105
\

e Configuration of Algorithm
— Starting values: 8%1) = 10, 9;” =—10
— Proposal density: A(0~1 12 x T)
— Number of draws: 2000

e Rejection rate: 48.35 %.
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Example: Metropolis-Hastings Algorithm

e Simple example: increase number of draws...

(

- N : with probability %

L

\

: with probability %

>
—_
2
~  ~—
I
w
L
|
[ —
|
\

e Configuration of Algorithm
— Starting values: 8%1) = 10, 9;” =10
— Proposal density: A(0~1 12 x T)
— Number of draws: 20000

e Rejection rate: 48.82 %.
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