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Abstract

We document that consumption growth rates are far from iid and have a highly persistent

component. First, we estimate univariate and multivariate models of cash-flow (consumption,

output, dividends) growth that feature measurement errors, time-varying volatilities, and mixed-

frequency observations. Monthly consumption data are important for identifying the stochastic

volatility process; yet the data are contaminated, which makes the inclusion of measurement er-

rors essential for identifying the predictable component. Second, we develop a novel state-space

model for cash flows and asset prices that imposes the pricing restrictions of a representative-

agent endowment economy with recursive preferences. To estimate this model we use a particle

MCMC approach that exploits the conditional linear structure of the approximate equilibrium.

Once asset return data are included in the estimation, we find even stronger evidence for the

persistent component and are able to identify three volatility processes: the one for the pre-

dictable cash-flow component is crucial for asset pricing, whereas the other two are important

for tracking the data. Our model generates asset prices that are largely consistent with the

data in terms of sample moments and predictability features. The state-space approach allows

us to track over time the evolution of the predictable component, the volatility processes, the

decomposition of the equity premium into risk factors, and the variance decomposition of asset

prices.
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1 Introduction

The dynamics of aggregate consumption play a key role in business cycle models, tests of the

permanent income hypothesis, and asset pricing. Perhaps surprisingly, there is a significant dis-

agreement about the basic time series properties of consumption. First, while part of the profession

holds a long-standing view that aggregate consumption follows a random walk, e.g., Hall (1978)

and Campbell and Cochrane (1999), the recent literature on long-run risks (LRR), e.g., Bansal and

Yaron (2004) and Hansen, Heaton, and Li (2008), emphasizes the presence of a small persistent

component in consumption growth.1 Second, while time-varying volatility was a feature that until

recently was mainly associated with financial time series, there is now a rapidly growing litera-

ture stressing the importance of stochastic volatility in macroeconomic aggregates, e.g., Bansal

and Yaron (2004), Bloom (2009), and Fernández-Villaverde and Rubio-Ramı́rez (2011), and the

occurrence of rare disasters, e.g., Barro (2009) and Gourio (2012).

Studying consumption growth dynamics leads to the following challenge. On the one hand, it

is difficult to identify time variation in volatility based on time-aggregated data, e.g., Drost and

Nijman (1993), which favors the use of high-frequency monthly data. On the other hand, monthly

consumption growth data are contaminated by measurement error, e.g., Slesnick (1998) and Wilcox

(1992), which mask the dynamics of the underlying process. We address this challenge by developing

and estimating a novel Bayesian state-space model with an elaborate measurement error component

that is consistent with the view that annual and quarterly consumption data are more accurate

than monthly data. The model is tailored toward monthly data, but a mixed-frequency approach

enables us to accommodate the longest span of annual consumption growth data starting from the

Great Depression era.

In the first part of our empirical analysis we provide strong evidence for a persistent component

of consumption growth as well as its time-varying volatility, which contradicts the commonly held

view that consumption follows a random walk. The combination of measurement errors and the

local-level component in “true” consumption growth in our empirical model allows us to generate

the strong second-order moving average (MA(2)) component in observed consumption growth. Our

basic empirical finding is robust across a wide range of model specifications that include univariate

models for consumption growth as well as bivariate models with either output or dividend growth

as second observable. The bivariate models feature a common persistent factor in cash-flow growth

rates. An important conclusion from our analysis is that plausible models of observed monthly con-

1The literature on robustness, e.g., Hansen and Sargent (2007), highlights that merely contemplating low-frequency

shifts in consumption growth can be important for macroeconomic outcomes and asset prices.
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sumption growth need to contain a MA(2) component, while macroeconomic models that confront

monthly data should filter out the high-frequency movements attributable to measurement errors.

In the second part of our empirical analysis, we embed the cash-flow process into a representative

agent endowment economy as in Bansal and Yaron (2004). This model is referred to as long run

risks (LRR) model. When asset returns are added to the set of observables and the LRR model

is jointly estimated with the dynamics of consumption and dividend growth, the credible intervals

for a common persistent component in cash-flow growth rates are further sharpened and three

separate volatility components are identified: one governing dynamics of the persistent cash-flow

growth component, and the other two controlling temporally independent shocks to consumption

and dividend growth. The stochastic volatility process for the persistent component is important

for asset prices, while the other two volatility processes are important for tracking the data. We

show that the estimated LRR model generates asset prices that are largely consistent with the

data. Moreover, we demonstrate that if we replace the parameters of the cash-flow processes from

the joint estimation by those obtained from the cash-flow-only estimation, the LRR model still has

by-and-large realistic asset pricing implications.

In addition to the empirical results, our paper also contains an important technical innovation.

To incorporate market returns and the risk-free rate into the state-space model that is used for

the second part of the empirical analysis, we have to solve for the asset pricing implications of the

LRR model to obtain measurement equations for these two series.2 Unlike in the cash-flow-only

specifications, the model with asset prices has the feature that the volatility processes also affect

the conditional means of the asset prices. This considerably complicates the evaluation of the

likelihood function with a nonlinear filter as well as the implementation of Bayesian inference. In

fact, due to the high-dimensional state space that arises from our measurement error model and

the mixed-frequency setting, this nonlinear filtering is a seemingly daunting task. We show how to

exploit the partially linear structure of the state-space model to derive a very efficient sequential

Monte Carlo (particle) filter.

Unlike the generalized method of moments (GMM) approach that is common in the LRR litera-

ture, our sophisticated state-space approach lets us track the predictable component xt as well as

the stochastic volatilities over time. In turn, this allows us to construct period-by-period decom-

positions of risk premia and asset price variances. Our Bayesian approach allows us to account

for three types of statistical uncertainties in a unified manner: parameter uncertainty, uncertainty

2In order to solve the model, we approximate the exponential Gaussian volatility processes by linear Gaussian

processes such that the standard analytical solution techniques that have been widely used in the LRR literature can

be applied. The approximation of the exponential volatility process is used only to derive the coefficients in the law

of motion of the asset prices.



3

about the hidden states, and uncertainty about future (or hypothetical shocks). These three types

of uncertainty feature prominently in our empirical results. Depending on the question at hand, we

present in some instances credible bands for our results reflecting multiple sources of uncertainty,

e.g., when we provide bands for the predictable component of cash flows; and in other instances, to

facilitate clear comparisons across parameterizations, we focus on the dominating source of uncer-

tainty, e.g., shock uncertainty when we examine the model-implied sample moments of asset prices

or the sampling distribution of R2’s from predictability regressions.

Our empirical analysis starts with the estimation of a state-space model according to which

consumption growth is the sum of an iid and an AR(1) component, focusing on the persistence ρ

of the AR(1) component. We show that once we include monthly measurement errors that average

out at the annual frequency, the fit of the model improves significantly, and we obtain an estimate

of ρ around 0.92.3 Using a battery of model specifications, we show that our measurement error

model in which measurement errors account for half of the variation in monthly consumption is the

preferred one. We further show that the estimation of the monthly model with measurement errors

leads to a more accurate estimate of ρ than the estimation with time-aggregated data. Importantly,

adding stochastic volatility leads to a further improvement in model fit, a reduction in the posterior

uncertainty about ρ, and an increase in the point estimate of ρ to 0.95. Because consumption

is generally viewed as being influenced by output fluctuations, we use our framework to show

that a similar persistent component is also important for characterizing quarterly GDP dynamics.

When we estimate a common persistent component in consumption and output growth (imposing

cointegration) inference regarding ρ is essentially the same as in the consumption-only specifications.

When we augment the state-space model to include a measurement equation for dividend growth

as a precursor to ultimately pricing equity, the joint estimation based on consumption and dividend

growth based on post-1959 data leads the estimate of ρ to rise to 0.97.

The LRR model used in the second part of the empirical analysis distinguishes itself from the

existing LRR literature in two important dimensions: our model for the cash flows includes mea-

surement errors and three volatility processes to improve the fit. Moreover, we specify an additional

process for variation in the time rate of preference as in Albuquerque, Eichenbaum, Luo, and Re-

belo (2016), which generates risk-free rate variation that is independent of cash flows and leads to

an improved fit for the risk-free rate. The estimation of the LRR model delivers several important

empirical findings. First, the estimate of ρ, i.e., the autocorrelation of the persistent cash-flow com-

ponent, is 0.987, which is higher than what we obtained based on the cash-flow-only estimation.4

3Without accounting for measurement errors, the estimate of ρ using monthly consumption growth data is in-

significantly different from 0 which can partly account for some view that consumption growth is an iid process.
4The corresponding half-lives of the cash-flow-only (0.97) and asset pricing based (0.987) estimates for ρ are 1.9
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Importantly, we show that the time path of the persistent component looks very similar with and

without asset price data.

Second, the volatility processes partly capture heteroskedasticity of innovations, and in part they

break some of the tight links that the model imposes on the conditional mean dynamics of asset

prices and cash flows. This feature significantly improves the model implications for consumption

and return predictability. An important feature of our estimation is that the likelihood focuses

on conditional correlations between the risk-free rate and consumption — a dimension often not

directly targeted in the literature. We show that because consumption growth and its volatility

determine the risk-free rate dynamics, one requires another independent process to account for the

weak correlation between consumption growth and the risk-free rate. The independent time rate of

preference shocks mute the model-implied correlation further and improve the model fit in regard

to the risk-free rate dynamics.

Third, it is worth noting that the median posterior estimate for risk aversion is around 9 while

it is around 2 for the intertemporal elasticity of substitution (IES). These estimates are broadly

consistent with the parameter values highlighted in the LRR literature (see Bansal, Kiku, and Yaron

(2012), and Bansal, Kiku, and Yaron (2014)). Fourth, at the estimated preference parameters and

those characterizing the consumption and dividend dynamics, the model is able to successfully

generate many key asset-pricing moments, and improve model performance relative to previous

LRR models along several dimensions. In particular, the posterior median of the equity premium

is 8.2%, while the model’s posterior predictive distribution is consistent with the observed large

volatility of the price-dividend ratio at 0.45, and the R2s from predicting returns and consumption

growth by the price-dividend ratio.

Our paper is connected to several strands of the literature. In terms of the LRR literature, Bansal,

Kiku, and Yaron (2014) utilize data that are time-aggregated to annual frequency to estimate the

LRR model by GMM and Bansal, Gallant, and Tauchen (2007) pursue an approach based on the

efficient method of moments (EMM). Both papers use cash flow and asset price data jointly for

the estimation of the parameters of the cash flow process. Our likelihood-based approach provides

evidence which is broadly consistent with the results highlighted in those paper and other calibrated

LRR models, e.g., Bansal, Kiku, and Yaron (2012). Our likelihood function implicitly utilizes a

broader set of moments than earlier GMM or EMM estimation approaches. These moments include

the entire sequence of autocovariances as well as higher-order moments of the time series used in

the estimation and let us measure the time path of the predictable component of cash flows as well

as the time path of the innovation volatilities. Rather than asking the model to fit a few selected

and 4.4 years respectively.
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moments, we are raising the bar and force the model to track cash flow and asset return time series.

Finally, it is worth noting that our paper distinguishes itself from previous LRR literature in showing

that even by just using monthly consumption growth data with an appropriate measurement error

structure, we are able to estimate the highly persistent predictable component. In complementary

research Nakamura, Sergeyev, and Steinsson (2015) show that an estimation based on a long cross-

country panel of annual consumption data also yields large estimates of the autocorrelation of the

persistent component.

To implement Bayesian inference, we embed a particle-filter-based likelihood approximation into

a Metropolis-Hastings algorithm as in Fernández-Villaverde and Rubio-Ramı́rez (2007) and An-

drieu, Doucet, and Holenstein (2010). This algorithm belongs to the class of particle Markov chain

Monte Carlo (MCMC) algorithms. Because our state-space system is linear conditional on the

volatility states, we can use Kalman-filter updating to integrate out a subset of the state variables.

The genesis of this idea appears in the mixture Kalman filter of Chen and Liu (2000). Particle

filter methods are also utilized in Johannes, Lochstoer, and Mou (2016), who estimate an asset

pricing model in which agents have to learn about the parameters of the cash flow process from

consumption growth data. While Johannes, Lochstoer, and Mou (2016) examine the role of pa-

rameter uncertainty for asset prices, which is ignored in our analysis, they use a more restrictive

version of the cash flow process and do not utilize mixed-frequency observations.5

Our state-space setup makes it relatively straightforward to utilize data that are available at

different frequencies. The use of state-space systems to account for missing monthly observations

dates back to at least Harvey (1989) and has more recently been used in the context of dynamic

factor models (see, e.g., Mariano and Murasawa (2003) and Aruoba, Diebold, and Scotti (2009))

and VARs (see, e.g., Schorfheide and Song (2015)). Finally, there is a growing and voluminous

literature in macro and finance that highlights the importance of volatility for understanding the

macroeconomy and financial markets (see, e.g., Bansal, Khatacharian, and Yaron (2005), Bloom

(2009), Fernández-Villaverde and Rubio-Ramı́rez (2011), Bansal, Kiku, and Yaron (2012), and

Bansal, Kiku, Shaliastovich, and Yaron (2014)). Our volatility specification that accommodates

three processes further contributes to identifying the different uncertainty shocks in the economy.

The remainder of the paper is organized as follows. Section 2 introduces the state-space model

for consumption growth and presents the empirical findings based on consumption growth data.

In Section 3 we consider multivariate cash-flow models and examine the evidence for a predictable

growth rate component in specifications that include GDP growth and dividend growth. Section 4

5Building on our approach, Creal and Wu (2015) use gamma processes to model time-varying volatilities and

estimate a yield curve model using particle MCMC. Doh and Wu (2015) estimate a nonlinear asset pricing model in

which all the asset prices and the consumption process are quadratic rather than linear function of the states.
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introduces the LRR asset-pricing model, describes the model solution and the particle MCMC

approach used to implement Bayesian inference. Section 5 discusses the empirical findings obtained

from the estimation of the LRR model and Section 6 provides concluding remarks. A description

of our data sources, analytical derivations, a detailed description of the state-space representations

and posterior inference, and additional empirical results are relegated to an Online Appendix.

2 Modeling Consumption Growth

The first step of our analysis is to develop an empirical state-space model for consumption growth.

We take the length of the period to be one month. The use of monthly data is important for

identifying stochastic volatility processes. Unfortunately, consumption data are less accurate at

monthly frequency than at the more widely-used quarterly or annual frequencies. In this regard,

the main contribution in this section is a novel specification of a measurement error model for

consumption growth, which has the feature that monthly measurement errors average out under

temporal aggregation. Moreover, because monthly consumption data have only been published

since 1959, we use annual consumption growth rates prior to 1959 and adapt the measurement

equation to the data availability.6 We develop our measurement error model in Section 2.1 and

present the empirical results in Section 2.2.

2.1 A Measurement Equation for Consumption

We proceed in two steps. First, we derive a measurement equation for consumption growth at the

annual frequency, which is used for pre-1959 data. Second, we specify a measurement equation for

consumption growth at the monthly frequency, which is used for post-1959 data. We use Cot and Ct

to denote the observed and the “true” level of consumption, respectively. Moreover, we represent

the monthly time subscript t as t = 12(j − 1) + m, where m = 1, . . . , 12. Here j indexes the year

and m the month within the year.

Measurement of Annual Consumption Growth. We define annual consumption as the sum of

monthly consumption over the span of one year, i.e., Ca(j) =
∑12

m=1C12(j−1)+m. Log-linearizing this

relationship around a monthly value C∗ and defining lowercase c as percentage deviations from the

log-linearization point, i.e., c = logC/C∗, we obtain ca(j) = 1
12

∑12
m=1 c12(j−1)+m. Defining monthly

consumption growth as the log difference

gc,t = ct − ct−1,
6In principle we could utilize the quarterly consumption growth data from 1947 to 1959, but we do not in this

version of the paper.
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we can deduce that annual growth rates are given by

gac,(j) = ca(j) − c
a
(j−1) =

23∑
τ=1

(
12− |τ − 12|

12

)
gc,12j−τ+1. (1)

We assume a multiplicative iid measurement-error model for the level of annual consumption, which

implies that, after taking log differences, observed annual consumption growth (o superscript)

ga,oc,(j) = gac,(j) + σaε
(
εa(j) − ε

a
(j−1)

)
. (2)

Measurement of Monthly Consumption Growth. Consistent with the practice of the Bureau

of Economic Analysis (BEA), we assume that the levels of monthly consumption are constructed

by distributing annual consumption over the 12 months of a year. We approximate the BEA’s

data construction by assuming that this distribution is based on an observed monthly proxy series

zt, where zt is a noisy measure of monthly consumption. The monthly levels of consumption are

determined such that the growth rates of monthly consumption are proportional to the growth rates

of the proxy series and monthly consumption adds up to annual consumption. A measurement-error

model that is consistent with this assumption is the following (a detailed derivation is provided in

the Online Appendix):

goc,12(j−1)+1 = gc,12(j−1)+1 + σε
(
ε12(j−1)+1 − ε12(j−2)+12

)
(3)

− 1

12

12∑
m=1

σε
(
ε12(j−1)+m − ε12(j−2)+m

)
+ σaε

(
εa(j) − ε

a
(j−1)

)
goc,12(j−1)+m = gc,12(j−1)+m + σε

(
ε12(j−1)+m − ε12(j−1)+m−1

)
, m = 2, . . . , 12.

The term ε12(j−1)+m can be interpreted as the error made by measuring the level of monthly con-

sumption through the monthly proxy variable, that is, in log deviations c12(j−1)+m = z12(j−1)+m +

ε12(j−1)+m. The summation of monthly measurement errors in the second line of (3) ensures that

monthly consumption sums up to annual consumption. It can be verified that converting the

monthly consumption growth rates into annual consumption growth rates according to (1) aver-

ages out the measurement errors and yields (2).

2.2 Empirical Analysis

We use the per capita series of real consumption expenditure on nondurables and services from the

NIPA tables available from the Bureau of Economic Analysis. Annual observations are available

from 1929 to 2014, quarterly from 1947:Q1 to 2014:Q4, and monthly from 1959:M1 to 2014:M12.
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Figure 1: Sample Autocorrelation
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Notes: Monthly data available from 1959:M2 to 2014:M12, quarterly from 1947:Q2 to 2014:Q4, annual from 1930 to

2014.

Growth rates of consumption are constructed by taking the first difference of the corresponding log

series.

Autocorrelation of Consumption Growth. Figure 1 displays the sample autocorrelation of

consumption growth for monthly, quarterly and annual data respectively. The figure clearly demon-

strates that at the annual frequency consumption growth is strongly positively autocorrelated while

at the monthly frequency consumption growth has a negative first autocorrelation. These auto-

correlation plots provide prima facie evidence for a negative moving average component at the

monthly frequency, which is consistent with the measurement error model described in Section 2.1.

Our measurement error model can reconcile the monthly negative autocorrelation with a strongly

positive autocorrelation for time aggregated annual consumption. The right panel in Figure 1 also

shows that the strong positive autocorrelation in annual consumption growth is robust to using the

long pre-war sample as well as the post war data. Given these features of the data, we focus our

analysis of measurement errors in consumption using the post 1959 monthly series.

A State-Space Model for Consumption Growth. In our subsequent analysis we will consider

several different laws of motion for “true” consumption growth. The benchmark specification takes

the following form:

gc,t+1 = µc + xt + σc,tηc,t+1, ηc,t+1 ∼ N(0, 1) (4)

xt+1 = ρxt +
√

1− ρ2ϕxσc,tηx,t+1, ηx,t+1 ∼ N(0, 1)

σc,t = σ exp(hc,t), hc,t+1 = ρhchc,t + σhcwc,t+1, wc,t+1 ∼ N(0, 1).
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This specification is based on Bansal and Yaron (2004) and decomposes consumption growth gc,t+1

into a persistent component, xt, and a transitory component, σc,tηc,t+1. The state-transition equa-

tion is augmented by the measurement equations (2) and (3) to form a state-space model.

The combination of measurement and state-transition equations leads to a high-dimensional state-

space model; see the Online Appendix for details. The data that we are using for the estimation

have the property that monthly consumption is consistent with annual consumption. While the

statistical agency may have access to the monthly proxy series zt in real time, it can only release

the monthly consumption series that is consistent with the corresponding annual consumption

observation at the end of each year. Thus, we specify the state-space model such that every 12

months the econometrician observes 12 consumption growth rates. This implies that in addition to

tracking the monthly measurement errors ε12(j−1)+m for m = 1, . . . , 12, the state-space model also

has to track 12 lags of xt.

Throughout this paper we use Bayesian inference for the model parameters and the hidden

states. In addition to the latent monthly consumption growth rates and measurement errors, the

state space also comprises the latent volatility process hc,t. Define the parameter vectors

Θcf = [µc, ρ, ϕx, σ]′, Θh = [ρhc , σhc ]

and the sequence of latent volatilities H0:T−1. To sample from the posterior distribution of

(Θcf ,Θh, H0:T−1) we use a Metropolis-within-Gibbs algorithm that iterates over three conditional

distributions: First, a Metropolis-Hastings step is used to draw from the posterior of Θcf condi-

tional on
(
Y,Θ

(s−1)
h , H

(s−1)
0:T−1

)
. Here the likelihood p(Y |Θcf , H

(s−1)
0:T−1) is evaluated with the Kalman

filter. Second, we draw the sequence of stochastic volatilities H0:T−1 conditional on
(
Y,Θ

(s)
cf ,Θ

(s−1)
h

)
using the algorithm developed by Kim, Shephard, and Chib (1998). This step involves the use of

a simulation smoother (e.g., Carter and Kohn (1994)) for a linear state-space model to obtain

draws from the conditional posterior distributions of the “residuals” gc,t+1−µc−xt and xt+1−ρxt.
Conditional on these residuals, it is possible to draw from the posterior of H0:T−1. Finally, we

draw from the posterior of the coefficients of the stochastic volatility processes, Θh, conditional on(
Y,H

(s)
0:T−1,Θ

(s)
cf

)
.

The Likelihood Function. We simplify the law of motion of consumption growth in (4) by

assuming that the innovations are homoskedastic, i.e., σhc = 0 and hc,t = 0 for all t. In Figure 2

we plot likelihood function contours based on a sample of monthly consumption growth rates that

ranges from 1959:M2 to 2014:M12. We consider two specifications: with and without measurement

errors. To isolate the role of measurement errors for inference about ρ, we set µc to the sample

mean and fix σ and σε to their respective maximum likelihood estimates, while varying the two
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Figure 2: Log-Likelihood Contour

With Measurement Errors Without Measurement Errors

σ̂ = 0.0018, σ̂ε = 0.0018 σ̂ = 0.0017 σ̂ = 0.0033

Notes: We use maximum likelihood estimation to estimate the homoskedastic version (σhc = 0, hc,t = 0) of model (4)

with and without allowing for measurement errors. We then fix σ = σ̂ and σε = σ̂ε at their point estimates and vary

ρ and ϕx to plot the log-likelihood function contour. Without measurement errors, we find that the log-likelihood

function is bimodal at positive and negative values of ρ. Therefore, we obtain two sets of σ̂.

parameters, ρ and ϕx, that govern the dynamics of xt. In the absence of measurement errors the

log-likelihood function is bimodal. The first mode is located at ρ = −0.23 which matches the

negative monthly sample autocorrelation (see Figure 1). The location of the second mode is at

ρ = 0.96, but the log-likelihood function is flat across a large set of values of ρ between -1 and 1.

Importantly, when we allow for monthly measurement errors according to (3), setting σaε = 0, the

log likelihood function has a very sharp peak, displaying a very persistent expected consumption

growth process with ρ = 0.92. Measurement errors at the monthly frequency help identify a large

persistent component in consumption by allowing the model to simultaneously match the negative

first-order autocorrelation observed at the monthly frequency and the large positive autocorrelation

at the annual frequency.

Bayesian Estimation of Homoskedastic Models. We now proceed with the Bayesian estima-

tion of variants of (4) using the monthly sample ranging from 1959:M2 to 2014:M12. Table 1 reports

quantiles of the prior distribution7 as well as posterior median estimates of the model parameters.

Estimates for the benchmark specification with monthly and annual measurement errors are re-

ported in column (1). We briefly comment on some important aspects of the prior distribution.

The prior for ρ (persistence of xt) is uniform over the interval (−1, 1) and encompasses values that

7In general, our priors attempt to restrict parameter values to economically plausible magnitudes. The judgment

of what is economically plausible is, of course, informed by some empirical observations, in the same way the choice

of the model specification is informed by empirical observations.
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Table 1: Posterior Median Estimates of Consumption Growth Processes

Prior Distribution Posterior Estimates

State-Space Model IID ARMA

M&A No ME M M (1,2)

AR(2) ρε 6= 0 ρη 6= 0

Distr. 5% 50% 95% (1) (2) (3) (4) (5) (6)

µc N -.007 .0016 .0100 .0016 .0016 .0016 .0016 .0016 .0016

ρ U -.90 0 .90 .918 -.684 .918 .919 - .913

ρ2 U -.90 0 .90 - -.353 - - - -

ϕx U .05 0.5 .95 .681 .704 .644 - -

U .1 1.0 1.9 - .482 - - - -

σ IG .0008 .0019 .0061 .0018 .0027 .0017 .0019 .0033 .0032

σε IG .0008 .0019 .0061 .0018 .0019 .0018 - -

σaε IG .0007 .0029 .0386 .0011 - - - - -

ρε U -.90 0 .90 - - .060 - - -

ρη U -.90 0 .90 - - - -.046 - -

ζ1 N -8.2 0 8.2 - - - - - -1.14

ζ2 N -8.2 0 8.2 - - - - - .302

ln p(Y ) 2887.1 2870.3 2883.9 2885.8 2863.2 2884.0

Notes: The estimation sample is from 1959:M2 to 2014:M12. We denote the persistence of the growth component xt
by ρ (and ρ2 if follows an AR(2) process), the persistence of the measurement errors by ρε, and the persistence of ηc,t
by ρη. We report posterior median estimates for the following measurement error specifications of the state-space

model: (1) monthly and annual measurement errors (M&A); (2) no measurement errors with AR(2) process for xt
(no ME AR(2)); (3) serially correlated monthly measurement errors (M, ρε 6= 0); (4) serially correlated consumption

shocks ηc,t (M, ρη 6= 0, ρ > ρη). In addition we report results for the following models: (5) consumption growth is

iid; (6) consumption growth is ARMA(1,2).

imply near iid consumption growth as well as values for which xt is almost a unit root process.

The parameter ϕx can be interpreted as the square root of a “signal-to-noise ratio,” meaning the

ratio of the variance of xt over the variance of the iid component σcηc,t+1. We use a uniform prior

for ϕx that allows for “signal-to-noise ratios” between 0 and 1. At an annualized rate, our a priori

90% credible interval for σ and σε ranges from 0.3% to 2.1% and the prior for the σaε covers the

interval 0.07% to 3.9%. For comparison, the sample standard deviations of annualized monthly

consumption growth and annual consumption growth are approximately 1.1% and 2%.

The estimate of ρ obtained from our benchmark specification is approximately 0.92, pointing
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toward a fairly persistent predictable component in consumption growth. The estimate of ϕx is

0.68 and implies that the variance of the variance of xt is roughly 50% smaller than the variance

of the iid component of consumption growth. At first glance, the large estimate of ρ in the

benchmark model may appear inconsistent with the negative sample autocorrelation of monthly

consumption growth reported in Figure 1. However, the sample moment confounds the persistence

of the “true” consumption growth process and the dynamics of the measurement errors. Our state-

space framework is able to disentangle the various components of the observed monthly consumption

growth, thereby detecting a highly persistent predictable component xt that is hidden under a layer

of measurement errors.

To assess the robustness of this finding we now modify the benchmark specification in several

dimensions. If we shut down the measurement errors and generalize xt to an AR(2) process (see

Column (2)), then the estimates of the autoregressive coefficients turn negative, thereby confirming

the graphical pattern in Figure 2. Reverting back to an AR(1) process for xt and allowing for serially

correlated measurement errors (see Column (3)) does not change the estimates of the benchmark

model. In fact the estimated autocorrelation for the measurement error is close to zero. Likewise, if

we allow for some serial correlation in the transitory component of “true” consumption growth (see

Column (4)), the estimate of ρ stays around 0.92. Finally, in the last two columns of Table 1 we

report estimates for an iid model of consumption growth and an ARMA(1,2) model. We compute

log marginal data densities for each specification. Differentials of ln p(Y ) can be interpreted as log

posterior odds (under the assumption that the prior odds are 1). The last row of Table 1 shows the

benchmark specification dominates all of the alternatives. In particular, the iid specification and

the state-space model without measurement errors are strongly dominated with log odds of 23.9

and 16.8 in favor of the benchmark.8

In order to examine the degree to which measurement errors contribute to the variation in

the observed consumption growth, we conduct variance decomposition of monthly and annual

consumption growth using measurement error specification of column (1) in Table 1. We find

that more than half of the observed monthly consumption growth variation is due to measurement

errors.9 For annual consumption growth data, this fraction drops below 1%. On the other hand,

8In a preliminary data analysis we estimated a variety of ARMA(p,q) models using maximum likelihood estimation.

We used the Schwarz Information Criterion (BIC) to estimate p and q which lead us to the ARMA(1,2) specification.

In the Online Appendix we are reporting results for other variants of the benchmark state-space model. Among them,

the specification in which the monthly measurement errors are not restricted to average out over the year is at par

with the benchmark specification in terms of fit. For reasons explained above, we find the benchmark specification

more appealing.
9Wilcox (1992) finds that more than a quarter of the variation in the retail sales series from Detroit and Philadelphia

is due to measurement error. For New York this figure is around 50% and LA around 67%. Our estimates are of a
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Table 2: Informational Gain Through High-Frequency Observations

Data Posterior of ρ

Frequency 5% 50% 95% 90% Intv. Width

Without Stochastic Volatility

Monthly .847 .918 .963 .116

Quarterly .843 .917 .962 .119

Annual .621 .893 .983 .362

With Stochastic Volatility

Monthly .904 .951 .980 .076

Quarterly .872 .931 .971 .099

Notes: The estimation sample ranges from 1959:M2 to 2014:M12. The model frequency is monthly. For monthly

data we use both monthly and annual measurement errors (specification (1) in Table 1). For quarterly (annual) data

we use quarterly (annual) measurement errors only. The model specification is provided in (4).

the opposite pattern holds true for the persistent growth component. While the variation in the

persistent growth component only accounts for 13% of the monthly consumption growth variation,

this fraction increases to 87% for annual consumption growth data.

Informational Gain Through Temporal Disaggregation. The observation that monthly

consumption growth data are strongly contaminated by measurement errors which to a large extent

average out at quarterly or annual frequency, suggests that one might be able to estimate ρ equally

well based on time-aggregated data. We examine this issue in Table 2. The first row reproduces the

ρ estimate from Specification (1) of Table 1. However, we now also report the 5% and 95% quantile

of the posterior distribution. Keeping the length of a period equal to a month in the state-space

model, we change the measurement equation to link it with quarterly and annual consumption

growth data. As the data frequency drops from monthly to annual, the posterior median estimate

of ρ falls from 0.92 to 0.89. Moreover, the width of the equal-tail probability 90% credible interval

increases from 0.12 to 0.36, highlighting that the use of high-frequency data sharpens inference

about ρ.

Hansen, Heaton, and Li (2008) estimate a cointegration model for log consumption and log

earnings to extract a persistent component in consumption. The length of a time period in their

similar order of magnitude.
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reduced-rank vector autoregression (VAR) is a quarter and the model is estimated based on quar-

terly data. The authors find that the ratio of long-run to short-run response of log consumption

to a persistent growth shock, ηx,t in our notation, is about two, which would translate into an

estimate of ρ of approximately 0.5 for a quarterly model. As a robustness check, we estimate two

quarterly versions of the homoskedastic state-space model: without quarterly measurement errors

and with quarterly measurement errors. The posterior median estimates of ρ are 0.649 and 0.676,

respectively. These results are by and large consistent with the low value reported in Hansen,

Heaton, and Li (2008) as well as the estimate in Hansen (2007) under the “loose” prior. Using a

crude cube-root transformation, the quarterly ρ estimates translate into 0.866 and 0.878 at monthly

frequency and thereby somewhat lower than the estimates obtained by estimating a monthly model

on quarterly data.

Accounting for Stochastic Volatility. We now re-estimate the benchmark model (4) allowing

for stochastic volatility. Our prior interval for the persistence of the volatility processes ranges from

0.27 to 0.999. The prior for the standard deviation of the consumption volatility process implies

that the volatility may fluctuate either relatively little, over the range of 0.7 to 1.2 times the average

volatility, or substantially, over the range of 0.4 to 2.4 times the average volatility.

According to Table 2 the width of the 90% credible interval for ρ shrinks from 0.116 to 0.076 for

monthly data and from 0.119 to 0.099 for quarterly data.10 At the same time the posterior median

of ρ increases from 0.918 to 0.951 for monthly data and from 0.917 to 0.931 for quarterly data.

Without stochastic volatility sharp movements in consumption growth must be accounted for by

large temporary shocks reducing the estimate of ρ; however, the presence of stochastic volatility

allows the model to account for these sharp movements by fluctuations in the conditional variance

of the shocks enabling ρ to be large. We conclude that allowing for heteroskedasticity reduces the

posterior uncertainty about ρ and raises the point estimate.

As a by-product, we also obtain an estimate for the persistence, ρhc , of the stochastic volatility

process in (4). The degree of serial correlation of the volatility also has important implications for

asset pricing. Starting from a truncated normal distribution that implies a 90% prior credible set

ranging from 0.27 to 0.99, based on monthly observations the posterior credible set ranges from

0.955 to 0.999, indicating that the data favor a highly persistent volatility process hc,t. Once the

observation frequency is reduced from monthly to quarterly the sample contains less information

about the high frequency volatility process and there is less updating of the prior distribution. Now

the 90% credible interval ranges from 0.73 to 0.97.11

10We found that the state-space model with stochastic volatility is poorly identified if the observation frequency is

annual, which is why we do not report this case in Table 1.
11We conducted a small Monte Carlo experiment in which we repeatedly simulated data from a consumption
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Table 3: Posterior Estimates: Consumption Only

Prior Posterior Posterior

1930-1959

1959:M2-2014:M12 1960:M1-2014:M12

Distr. 5% 50% 95% 5% 50% 95% 5% 50% 95%

Consumption Growth Process

µc N -.007 .0016 .0100 .0009 .0016 .0019 .0010 .0016 .0018

ρ U -.9 0 .9 .904 .951 .980 .891 .940 .971

ϕx U .05 .50 .95 .357 .509 .778 .369 .535 .759

σ IG .0008 .0019 .0061 .0017 .0021 .0025 .0017 .0022 .0028

ρhc NT .27 .80 .999 .955 .988 .999 .949 .984 .996

σ2hc IG .0011 .0043 .0283 .0007 .0014 .0030 .0022 .0054 .0242

Consumption Measurement Error

σε IG .0008 .0019 .0061 .0010 .0013 .0016 .0010 .0013 .0016

σaε IG .0007 .0029 .0386 .0010 .0015 .0020 .0010 .0198 .0372

Notes: We report estimates of model (4). We adopt the measurement error model of Section 2.1. N , NT , G,

IG, and U denote normal, truncated (outside of the interval (−1, 1)) normal, gamma, inverse gamma, and uniform

distributions, respectively. We allow for annual consumption measurement errors εat during the periods from 1930 to

1948. We impose monthly measurement errors εt when we switch from annual to monthly consumption data from

1960:M1 to 2014:M12.

Estimation Based on Mixed-Frequency Data. To measure the small persistent component in

consumption growth, one would arguably want to use the longest span of data possibe. Adopting

a mixed-frequency approach, we now add annual consumption growth data from 1930 to 1959 to

our estimation sample. It is well known from Romer (1986) and Romer (1989) that prewar data

on consumption are known to be measured with significantly greater error that exaggerates the

size of cyclical fluctuations. To cope with the criticism, we allow for annual measurement errors

during 1930-1948 but restrict them to be zero afterwards. This break in measurement errors is also

motivated by Amir-Ahmadi, Matthes, and Wang (2016) who provide empirical evidence for larger

measurement errors in the early sample before the end of World War II. Importantly, we always

account for monthly measurement errors whenever we use monthly data.

growth model with stochastic volatility and then estimated models without and with stochastic volatility. For both

specifications the estimate of ρ is downward biased and for the misspecified version without stochastic volatility, the

downward bias is slightly larger.
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Prior credible intervals and posterior estimates are presented in Table 3. Note that the ρ estimate

reported under the 1959:M2-2014:M12 posterior is the same as the estimate reported in Table 2

based on monthly data and the model with stochastic volatility. Extending the sample period

reduces the posterior median estimate of ρ slightly, from 0.95 to 0.94. We attribute this change to

the large fluctuations around the time of the Great Depression. The width of the credible interval

stays approximately the same. Note that at this stage we are adding 30 annual observations to a

sample of 671 monthly observations (and we are losing 11 monthly observations from 1959). The

standard deviation of the monthly measurement error σε is estimated to be about half of σ and

is robust to different estimation samples because it is solely identified from monthly consumption

growth data. The standard deviation of the annual measurement error is larger than that of

monthly measurement error by a factor of 4 (recall that to compare σε and σaε one needs to scale

the latter by
√

12). This finding is consistent with Amir-Ahmadi, Matthes, and Wang (2016) who

find significant presence of measurement errors in output growth during 1930 and 1948.

3 Information From Other Cash-Flow Series

Because aggregate consumption is typically thought of as an endogenous variable that responds to

fluctuations in aggregate income, we examine in Section 3.1 whether our evidence for a predictable

component in consumption growth can be traced back to GDP and whether estimating a joint

model for consumption and GDP has important effects on our inference. In Section 3.2 we include

dividend growth data in the estimation of the cash-flow model to set the stage for the subsequent

asset-pricing analysis. Finally, we provide a brief summary of the cash-flow estimation results in

Section 3.3. Posterior inference for the models considered in this section is implemented with a

Metropolis-within-Gibbs sampler that is similar to the one described in Section 2.2.

3.1 Real GDP

We begin the analysis with a monthly model for GDP growth gy,t+1 that is identical to the bench-

mark consumption growth model in (4). Because GDP is only available at quarterly frequency, the

measurement equation is

goy,t+1 =

5∑
j=1

(
3− |j − 3|

3

)
gy,t+2−j , t = 1, 4, 7, . . . (5)

We estimate this model without measurement errors (this was the preferred specification based on

marginal data density comparisons) using observations on per capita GDP growth from 1959:Q1 to
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Table 4: Posterior Estimates: GDP Growth Only

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

µy N -.007 .0016 .0100 .0011 .0017 .0022

ρ U .05 .50 .95 .698 .874 .966

ϕx U .05 .50 .95 .117 .259 .418

σ IG .0008 .0019 .0061 .0040 .0045 .0051

ρhy NT .27 .80 .999 .928 .970 .992

σ2hy IG .0013 .0043 .0283 .0026 .0086 .0228

Notes: We report estimates of model (4) for GDP growth. N , NT , IG, and U denote normal, truncated (outside of

the interval (−1, 1)) normal, inverse gamma, and uniform distributions, respectively. The estimation sample ranges

from 1959:Q1 to 2014:Q4.

2014:Q4.12 The estimation results are provided in Table 4. The posterior median is 0.874 and the

equal-tail 90% credible interval ranges from 0.698 to 0.966. These estimates can be compared to

those obtained from quarterly consumption growth reported in Table 2 where the posterior median

estimate of ρ is 0.921 (with stochastic volatility) and the upper bound of the credible interval is

0.963. Thus, while the median of ρ for GDP is smaller than for consumption, the 95% quantiles

are in fact very similar.

So far, we have considered univariate models of consumption and income growth. Next, we

examine the joint dynamics of these two series. In most models, consumption and income are

cointegrated. We impose this cointegration relationship in the empirical analysis below. Specifically,

the consumption dynamics are given by (4), while the log income-consumption ratio yct ≡ yt − ct
takes the form:

yct+1 = µyc + φycxt+1 + st+1, st+1 = ρsst +
√

1− ρ2sσs,tηs,t+1, ηs,t+1 ∼ N(0, 1). (6)

We assume that the log of stochastic volatility σs,t follows an AR(1) process and adopt the mea-

surement error model of Section 2.1 for consumption growth. For GDP, the measurement equation

time-aggregates monthly growth rates gy,t = gc,t+∆yct to average quarterly growth rates as in (5).

The estimated parameters for the cointegration model based on monthly consumption growth

and quarterly GDP growth data are reported in Table 5. The posterior median estimate of ρ is

0.948 and the equal-tail probability 90% credible interval ranges from 0.913 to 0.970. Here, the

12We take log differences of the real GDP per capita series provided by FRED.
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Table 5: Posterior Estimates: Consumption and Output

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Consumption

µ N -.007 .0016 .0100 .0012 .0016 .0020

ρ U -.9 0 .9 .913 .948 .970

ϕx U .05 .50 .95 .419 .593 .796

σ IG .0008 .0019 .0061 .0015 .0018 .0022

σε IG .0008 .0019 .0061 .0013 .0015 .0018

ρhc NT .27 .80 .999 .949 .979 .996

σ2hc IG .0013 .0043 .0283 .0024 .0091 .0235

Output

ρs U -.9 0 .9 .943 .965 .983

ϕs U 5 50 95 6.65 8.82 13.25

φyc U -90 0 90 -1.83 -1.57 -1.18

ρhs NT .27 .80 .999 .943 .982 .996

σ2hs IG .0013 .0043 .0283 .0015 .0039 .0187

Notes: The estimation sample ranges from 1959 to 2014. We report estimates of model (6). N , NT , IG, and U denote

normal, truncated (outside of the interval (−1, 1)) normal, inverse gamma, and uniform distributions, respectively.

strong evidence in monthly consumption in favor of a predictable component xt seems to dominate

the estimation result. There is no information in GDP growth that contradicts this information.

The log-GDP consumption ratio itself is fairly persistent with median estimate of ρs of 0.965. Thus,

deviations from the steady-state ratio are relatively long-lived.

How does our evidence relate to common views on GDP dynamics? U.S. GDP growth is well

described as an AR(1) model with an autocorrelation coefficient of about 0.3. In our cointegration

model the implied posterior predictive quantiles (0.05%, 0.50%, and 0.95%) for the autocorrelation

of output growth at the quarterly frequency are 0.156, 0.273, and 0.389, which is consistent with

this conventional wisdom. Thus, on balance, we view the dynamics of output and consumption to

be consistent with our LRR specification with both series containing a small persistent component,

and with models that imply a transmission from income to consumption.13

13It is well known that in production models consumption is not a Martingale sequence and the predictable
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3.2 Dividends

As our subsequent asset pricing analysis focuses on the U.S. aggregate equity market, we now

include dividend growth data in the estimation of the cash-flow model. We use monthly observations

of dividends of the CRSP value-weighted portfolio of all stocks traded on the NYSE, AMEX, and

NASDAQ. Dividend series are constructed on the per share basis as in Campbell and Shiller (1988b)

and Hodrick (1992). Following Robert Shiller, we smooth out dividend series by aggregating three

months values of the raw nominal dividend series.14 We then compute real dividend growth as log

difference of the adjusted nominal dividend series and subtract CPI inflation. Further details are

provided in the Online Appendix.

Measurement Equation for Dividend Growth. Dividend data are available at monthly fre-

quency for the estimation period from 1930 to 2014. There is a consensus in the finance literature

that aggregate dividend series for a broad cross section of stocks exhibit a strong seasonality. This

seasonality is generated by payout patterns which are not uniform over the calendar year. Much of

this seasonality, in particular its deterministic component, can be removed by averaging observed

dividend growth over the span of a year. To do so, we utilize the same “tent” function as for

consumption growth in (1) and define

ga,od,t+1 =
23∑
j=1

(
12− |j − 12|

12

)
god,t−j+2, gad,t+1 =

23∑
j=1

(
12− |j − 12|

12

)
gd,t−j+2. (7)

Our measurement equation then takes the form

ga,od,t+1 = gad,t+1 + σad,εε
a
d,t+1, εad,t+1 ∼ N(0, 1). (8)

For computational reasons that arise in the estimation of the asset pricing model in Section 4,

we allow for some additional measurement errors, which we assume to be iid across periods. We

fix these measurement errors at 1% of the sample variance of dividend growth rates. Note that

(8) does not imply god,t+1 = gd,t+1, even for σad,ε = 0. For instance, there could be a deterministic

seasonal pattern in the observed monthly dividend growth data god,t+1 that is not part of the model-

implied process gd,t+1. The tent-shaped transformation would remove the seasonal component from

observed data such that we are effectively equating the non-seasonal component of the observed

data to the model-implied data.

component in consumption growth can be generated by a predictable component in productivity growth; see Croce

(2014). In a frictionless environment both labor and capital income are determined by their respective marginal

products, which in turn depend on the exogenous productivity process.
14We follow Shiller’s approach despite the use of the annualization in (8) because we found that the annualization

did not remove all the anomalies in the data.
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State-Transition Equation. We will model consumption and dividend growth as a joint process.

The law of motion for consumption growth is identical to (4), except for the fact that now we

will have separate volatility processes for the persistent and transitory components. Dividend

streams have levered exposures to both xt and ηx,t+1, which is captured by the parameters φ

and π, respectively. We allow σd,tηd,t+1 to capture idiosyncratic movements in dividend streams.

Overall, the cash-flow dynamics follow:

gc,t+1 = µc + xt + σc,tηc,t+1 (9)

xt+1 = ρxt +
√

1− ρ2σx,tηx,t+1

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1,

σi,t = ϕiσ exp(hi,t), hi,t+1 = ρhihi,t + σhiwi,t+1, i = {c, x, d}

where the shocks are assumed to be ηi,t+1, wi,t+1 ∼ N(0, 1), i = {c, x, d} and we impose the

normalization ϕc = 1. For now, we will also restrict hx,t = hc,t and only report estimates for ρh,c

and σ2h,c.

Estimation Results. Table 6 provides percentiles of the prior distribution and the posterior dis-

tribution for the post 1959 estimation sample and for the mixed frequency sample starting in 1930.

The priors for φ and π, parameters that determine the comovement of dividend and consumption

growth, are uniform distributions on the interval [−10, 10]. The parameter ϕd determines the stan-

dard deviation of the iid component of dividend growth relative to consumption growth. Here we

use a prior that is uniform on the interval [0, 10], thereby allowing for dividends to be much more

volatile than consumption. The prior for the standard deviation of the dividend volatility process

implies that the volatility may fluctuate either relatively little, over the range of 0.5 to 2.1 times the

average volatility, or substantially, over the range of 0.1 to 13 times the average volatility. Finally,

we fix the measurement error variance (σad,ε)
2 at 1% of the sample variance of dividend growth.

The most important finding is that the posterior median ρ increases as we add dividend growth

data in the estimation. In addition, we find significant reduction in our uncertainty about ρ captured

by the distance between 95% and 5% posterior quantiles. The posterior median of ρ is around 0.97

for the post 1959 sample and is 0.95 for the longer sample, both of which are higher than those

in Table 3. The 5-95% distance dropped from 0.076 to 0.054 as we include dividend growth in

the estimation (compare with Table 3). The posterior median of the standard deviation of the

unconditional volatility of the persistent component ϕx is around 0.43, slightly lower than before.

The dividend leverage ratio on expected consumption growth φ is estimated to be around 2.8-3.5

and the standard deviation of the idiosyncratic dividend shocks ϕd is around 4.8. The estimation

results also provide strong evidence for stochastic volatility. According to the posteriors reported
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Table 6: Posterior Estimates: Consumption and Dividend Growth

Prior Posterior Posterior

1930-1959

1959:M2-2014:M12 1960:M1-2014:M12

Distr. 5% 50% 95% 5% 50% 95% 5% 50% 95%

Consumption Growth Process

ρ U -.90 0 .90 .937 .967 .991 .923 .952 .978

ϕx U .05 .50 .95 .285 .430 .834 .291 .430 .684

σ IG .0008 .0019 .0061 .0019 .0022 .0025 .0021 .0029 .0036

ρhc NT .27 .80 .999 .952 .985 .997 .976 .992 .998

σ2hc IG .0013 .0043 .0283 .0015 .0053 .0185 .0013 .0034 .0132

Dividend Growth Process

φ U -9.0 0.0 9.0 2.13 2.85 3.55 3.31 3.52 3.64

π U -9.0 0.0 9.0 .136 .358 .751 .642 .819 .932

ϕd U .50 5.0 9.5 3.51 4.69 6.16 3.31 4.82 7.66

ρhd NT .27 .80 .999 .939 .977 .994 .951 .977 .992

σ2hd IG .015 .0445 .208 .0166 .0418 .1076 .0146 .0357 .0835

Consumption Measurement Error

σε IG .0008 .0019 .0062 .0009 .0011 .0014 .0009 .0012 .0015

σaε IG .0007 .0029 .0389 - - - .0006 .0067 .0134

Notes: We utilize the mixed-frequency approach in the estimation: For consumption we use annual data from 1930

to 1959 and monthly data from 1960:M1 to 2014:M12; we use monthly dividend annual growth data from 1930:M1 to

2014:M12. For consumption we adopt the measurement error model of Section 2.1. We allow for annual consumption

measurement errors εat during the periods from 1930 to 1948. We impose monthly measurement errors εt when we

switch from annual to monthly consumption data from 1960:M1 to 2014:M12. We fix µc = 0.0016 and µd = 0.0010

at their sample averages. Moreover, we fix the measurement error variance (σad,ε)
2 at 1% of the sample variance of

dividend growth. N , NT , G, IG, and U denote normal, truncated (outside of the interval (−1, 1)) normal, gamma,

inverse gamma, and uniform distributions, respectively.

in Table 6, both σc,t and σd,t exhibit significant time variation. The posterior medians of ρhc and

ρhd range from 0.98 to 0.99.

Cointegration of Dividends and Consumption. In our analysis aggregate consumption is

measured per capita and dividends are computed per share. Thus, there is no theoretical reason

for the two series to be cointegrated. Nonetheless, we examined the presence of a cointegration
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relationship between the observed series cot and dot . First, we conducted two frequentist cointegration

tests based on post-1959 monthly data. The first test is an augmented Dickey-Fuller test that

imposes the cointegration vector [1, −1] and the second test is an Engle-Granger test based on an

estimated cointegration vector of [1, −0.55]. None of these tests can reject the null hypothesis of

no cointegration. Second, we estimate a modified state-space model with a hardwired cointegration

restriction. This model retains the consumption growth dynamics of (9), but the law of motion of

dividends is modified as follows:

dct+1 = µdc + φdcxt+1 + st+1, st+1 = ρsst +
√

1− ρ2sσs,tηs,t+1, ηs,t+1 ∼ N(0, 1), (10)

where dct+1 ≡ dt+1 − ct+1 is the error correction representation for dividends and consumption.

dct+1 loads on xt+1, and a stationary AR(1) process st+1, which has its own stochastic volatility

process σs,t. Under this structure, it can be easily verified that dividend growth can be written as

gd,t+1 = ∆dct+1 +gc,t+1. The measurement equation for dividends then follows equation (8). A full

set of estimates of the cointegration specification is reported in the Online Appendix. The estimate

of ρ, as well as the other estimates of the consumption parameters are essentially unaffected by the

cointegration specification. The marginal likelihood for the cointegration specification is 6,041.1

whereas the marginal likelihood for the original specification is 6,101.2. Thus, there is no evidence

in the data in favor of the cointegration restriction.

3.3 Summary of Cash-Flow-Only Analysis

Aggregate consumption is a key macroeconomic variable, and it is therefore important for macroe-

conomists to understand its dynamic properties. There are several important implications that

are robust across our analyses of consumption, consumption and output, and consumption and

dividends. At the monthly frequency, consumption growth has a very strong MA(2) component.

Ignoring this MA(2) component distorts inference. There is clear evidence against the hypothesis

that consumption is a random walk at monthly frequency. Our interpretation of the MA(2) com-

ponent is that it is generated by MA(1) measurement errors and a highly persistent “local level”

component.15 Empirically, our measurement error specification is preferred to the ARMA(1,2)

specification. Thus, if the goal is to create a reduced-form model of consumption, it is important to

capture the MA component. If the goal is to confront a macro model with monthly consumption

data, it is important to apply a “filter” that removes the high-frequency movements in consumption

15This interpretation is consistent with studies that examine the quality of consumption data, e.g., Wilcox (1992),

but from a pure time series perspective, we cannot rule out that the MA(2) component is partly due to transient

dynamics in “true” consumption growth.
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growth that we attribute to measurement error, because a typical macro model is not equipped

to capture these dynamics. Overall, the posterior interval for the parameter estimates essentially

encompass those used in the LRR literature (e.g Bansal, Kiku, and Yaron (2012)). Importantly,

the various estimation results (univariate consumption, consumption and GDP, and consumption

and dividends) provide supportive evidence for a small persistent component in both consumption

growth rate and its stochastic volatility. Consistent with previous LRR work, this evidence is

distinctly different from a commonly held view in which consumption growth is an iid process.

4 The Long-Run Risks Model

We now embed the cash flow process (9) into an endowment economy, which allows us to price

financial assets. The preferences of the representative household are described in Section 4.1.

Section 4.2 describes the model solution. Section 4.3 presents the state-space representation of the

asset-pricing model and its Bayesian estimation.

4.1 Representative Agent’s Optimization

We consider an endowment economy with a representative agent that has Epstein and Zin (1989)

recursive preferences and maximizes her lifetime utility,

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

,

subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion,

θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution. As highlighted in Albuquerque,

Eichenbaum, Luo, and Rebelo (2016), we also allow for a preference shock, λt, to the time rate of

preference. The endowment stream is given by the law of motion for consumption and dividend

growth in (9), and the growth rate of the preference shock, denoted by xλ,t, follows an AR(1)

process with shocks that are independent of the shocks to cash flows:

xλ,t+1 = ρλxλ,t + σληλ,t+1, ηλ,t+1 ∼ N(0, 1). (11)

The Euler equation for any asset ri,t+1 takes the form

Et [exp (mt+1 + ri,t+1)] = 1, (12)
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where mt+1 = θ log δ + θxλ,t+1 − θ
ψgc,t+1 + (θ − 1)rc,t+1 is the log of the real stochastic discount

factor (SDF), and rc,t+1 is the log return on the consumption claim. We reserve rm,t+1 for the log

market return – the return on a claim to the market dividend cash flows.16

4.2 Solution

Our goal is to devise a solution method that strikes a balance between accuracy and computational

time. The solution described subsequently meets this requirement: it can be computed quickly

because it relies on analytical approximations; it leads to a conditionally linear state-space repre-

sentation for which the likelihood function can be efficiently evaluated with a particle filter (see

below); and it is accurate for the empirically relevant parameter values.

Conditional on the cash-flow dynamics in (9) and the Euler equation (12), we have to derive

the asset prices for the model economy. In order to fit the cash-flow specification to consumption

and dividend growth data, we assumed that the volatilities follow log Gaussian processes: σi,t =

ϕiσ exp(hi,t), where hi,t is a linear autoregressive process with normally-distributed innovations.

This specification has been empirically successful in capturing conditional heteroskedasticity in a

broad set of financial and macroeconomic time series.

The advantage of the exponential transformation is that it ensures that volatilities are non-

negative. The disadvantage is that under this specification the expected value of the level of

consumption and dividends is infinite, which creates problems with the existence of continuation

values in the endowment economy. This issue has been pointed out, for instance, in Chernov, Gal-

lant, Ghysels, and Tauchen (2003) and Andreasen (2010), who proposed to splice the exponential

transformation of hi,t together with a non-exponential function, e.g., a square-root function, for hi,t

exceeding some large threshold h̄i. To obtain a solution for the asset prices we proceed slightly dif-

ferently, by taking a linear approximation of the exponential transformation σ2i,t = (ϕiσ)2 exp(2hi,t)

around the steady state hi,∗ = 0 and replacing the innovation variances in (9) with a process that

follows Gaussian dynamics:

σ2i,t+1 = (ϕiσ)2(1− ρhi) + ρhiσ
2
i,t + σwiwi,t+1, i = {c, x, d}. (13)

16Formally, markets are complete in the sense that all income and assets are tradable and add up to total wealth

for which the return is Rc,t. In particular, let Rj,t+1 = (dj,t+1 + pj,t+1)/pj,t be the return to a claim that pays the

dividend stream {dj,τ}∞τ=t and has the price pj,t. Let qj,t be the number of shares. Then Wt−Ct =
∑
j pj,tqj,t. Wealth

next period, Wt+1, equals
∑
j pj,tqj,tRj,t+1, and it follows that Rc,t+1 =

∑
j pj,tqj,tRj,t+1∑

j pj,tqj,t
. As in Lucas (1978), we

normalize all shares qj,t to one and the risk free asset to be in zero net supply such that in equilibrium Ct = Dm+Do,

where Dm are the dividends to all tradable financial assets and Do are dividends on all other assets (e.g., labor,

housing etc.). Rm, the return we utilize in our empirical work, is the return on the claims that pay dividends Dm.
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Just as the above-mentioned approaches of modifying the exponential transformation, the linear

approximation effectively generates thinner tails for the variance processes and facilitates valuations

to be finite.17 After this linearization, the volatility process is identical to the one used in Bansal

and Yaron (2004) and the subsequent work that builds on their paper.

Asset prices can now be derived by using the approximate analytical solution described in Bansal,

Kiku, and Yaron (2012) which utilizes the Campbell and Shiller (1988a) log-linear approximation

for returns. This solution serves our purpose well, because it can be computed very quickly, which

facilitates the Bayesian estimation below. The log price-consumption ratio takes the form

pct = A0 +A1xt +A1,λxλ,t +A2,cσ
2
c,t +A2,xσ

2
x,t. (14)

As discussed in Bansal and Yaron (2004), A1 =
1− 1

ψ

1−κ1ρ
, the elasticity of prices with respect to growth

prospects, will be positive whenever the IES, ψ, is greater than 1. A1,λ = ρλ
1−κ1ρλ

, the elasticity

of prices with respect to the growth rate of the preference shock, is always positive. Further, the

elasticity of pct with respect to the two volatility processes σ2c,t and σ2x,t is θ
2

(1− 1
ψ
)2

1−κ1νc
and θ

2
(κ1A1)2

1−κ1νx

respectively; both will be negative — namely, prices will decline with uncertainty — whenever θ

is negative. A condition that guarantees a negative θ is that γ > 1, and ψ > 1 – a configuration

relevant for our parameter estimates and one in which agents exhibit preference for early resolution

of uncertainty. The innovation to the log stochastic discount factor (SDF) are linear in the shocks

to consumption growth ηc, ηx, the preference shocks, ηλ, and the shocks to volatilities wc, and

wx. Denoting λs as their respective market prices of risk, it is instructive to note that λc = γ,

λx =
(γ− 1

ψ
)κ1

1−κ1ρ
, λλ = − θ−κ1ρλ

1−κ1ρλ
(and λwc and λwx) are positive (negative) whenever γ > 1 and ψ > 1.

Furthermore, when preferences are time separable, namely, when θ = 1, λx, λwx , and λwc are all

zero.

Risk premia are determined by the negative covariation between the innovations to returns and

the innovations to the SDF. It can be shown that the risk premium for the market return, rm,t+1,

is
Et(rm,t+1 − rf,t) +

1

2
vart(rm,t+1) = −covt(mt+1, rm,t+1) (15)

= βm,cλcσ
2
c,t︸ ︷︷ ︸

short-run risk

+ βm,xλxσ
2
x,t︸ ︷︷ ︸

long-run growth risk

+ βm,λλλσ
2
λ︸ ︷︷ ︸

preference risk

+βm,wxλwxσ
2
wx + βm,wcλwcσ

2
wc︸ ︷︷ ︸

volatility risks

,

where the βs reflect the exposures of the market return to the underlying consumption risks. Equa-

tion (15) highlights that the conditional equity premium can be attributed to (i) short-run con-

sumption growth, (ii) long-run growth, (iii) preference shock, (iv) short-run and long-run volatility

risks.
17A quantitative comparison among the various approaches of thinning the tails of the σ2

i,t processes is beyond the

scope of this paper.
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A key variable for identifying the model parameters is the risk-free rate. Under the assumed

dynamics in (9), the risk-free rate is affine in the state variables and follows

rf,t = B0 +B1xt +B1,λxλ,t +B2,cσ
2
c,t +B2,xσ

2
x,t. (16)

It can be shown that B1 = 1
ψ > 0 and the risk-free rate rises with good economic prospects, while

B1,λ = −ρλ < 0 and the risk-free rate falls with positive preference shock. Under ψ > 1 and γ > 1,

B2,c and B2,x are negative so the risk-free rate declines with a rise in economic uncertainty. Further

details of the solution are provided in the Online Appendix.

The accuracy of the log-linearization depends on the parameterization of the LRR model. Taking

the linear volatility process in (13) as given, Pohl, Schmedders, and Wilms (2016) compared the

quantitative implications of our model solution to that of a nonlinear solution obtained by a pro-

jection method. They find that discrepancies for key asset pricing moments between the solutions

are small (less than 6%) conditional on a parameterization that is similar to the posterior medians

reported in Table 7 below. However, the discrepancies become larger if the persistence parameters

ρ and ρh are increased and pushed toward the upper bound of credible sets derived from marginal

posterior distributions. Thus, strictly speaking, the parameter estimates that we are reporting

below should be interpreted as parameter estimates for the approximation.18

4.3 State-Space Representation and Bayesian Inference

While the state-space models for the cash-flow dynamics analyzed in Sections 2 and 3 can be

analyzed with a fairly straightforward Metropolis-within-Gibbs sampler, posterior computations for

the model with asset returns are considerably more complicated because the stochastic volatility

process ht = [hc,t, hx,t, hd,t]
′ affects the conditional mean of the asset prices.

The measurement equation can be expressed as

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1(ht+1, ht) + Σuut+1

)
, ut+1 ∼ N(0, I). (17)

The vector of observables yt comprises consumption and dividend growth, the observed market

return rom,t and the risk-free rate rof,t. ut+1 is a vector of measurement errors and At+1 is a

18A similar issue arises in the literature on dynamic stochastic general equilibrium (DSGE) models: the vast

majority of DSGE models are estimated based on log-linear approximations, which facilitate a speedy evaluation of

the likelihood function with the Kalman filter. The caveat that strictly speaking the resulting parameter estimates

are estimates for the log-linear approximation has been widely accepted in this literature. An immediate consequence

is that one should not plug parameter estimates obtained from a log-linear approximation into the nonlinear version

of the model, becase it will lead to a mismatch between model-implied moments and the moments in the data; see

An and Schorfheide (2007) for more details.
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selection matrix that accounts for deterministic changes in the data availability. svt+1(·) is a vector

of conditional variances that depend on the log volatilities of the cash flows, ht+1 and ht. The

remaining “linear” state variables are collected in the vector st+1, which essentially consists of the

persistent cash flow component xt (see (9)) and the preference shock xλ,t. However, in order to

express the observables yt+1 as a linear function of st+1, to capture the elaborate measurement

error model of consumption, and to account for potentially missing observations, it is necessary

to augment st+1 by lags of xt and xλ,t as well as the innovations for the cash-flow process and

measurement errors. This leads to a high dimensional state vector st (see Online Appendix for a

precise definition).

The solution of the LRR model sketched in Section 4.2 provides the link between the state

variables and the observables yt+1. The state variables themselves follow vector autoregressive

processes of the form

st+1 = Φst + vt+1(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ N(0, I), (18)

where vt+1(·) is an innovation process with a variance that is a function of the log volatility process

ht and wt+1 is the innovation of the stochastic volatility process.

The key difference between the nonlinear state-space model given by (17) and (18) and the

state-space models estimated in Sections 2 and 3 is that the volatility states (ht+1, ht) enter the

conditional mean of yt+1 through the model-implied asset returns. This means that the Metropolis-

within-Gibbs sampler that we used previously is not valid for the model with asset prices. Instead,

we will use a particle filter to approximate the likelihood function of the state-space model and

then embed the likelihood approximation into a Metropolis-Hastings algorithm.

Our particle filter exploits the particular structure of the state-space model. Conditional on

the volatility states (ht+1, ht), the model is linear. Building on ideas in Chen and Liu (2000), we

use Kalman filtering steps to track the Gaussian distribution of st|(hjt , Y1:t), where {hjt ,W
j
t }Mj=1

is a set of particle values and weights for the volatility states. Because conditional on the 3-

dimensional volatility vector hjt one can integrate over the high-dimensional vector st analytically

(Rao-Blackwellization), the particle filter approximation p̂(Y |Θ) of the likelihood function tends

to be sufficiently accurate so that it can be embedded into a random walk Metropolis-Hastings

algorithm. Here Θ comprises the parameters of the cash-flow process, the volatility parameters,

and the preference parameters of the representative household. The resulting sampler belongs to

the class of particle MCMC samplers. Andrieu, Doucet, and Holenstein (2010) have shown that

the use of p̂(Y |Θ) in MCMC algorithms can still deliver draws from the actual posterior p(Θ|Y )

because these approximation errors essentially average out as the Markov chain progresses. Further

details of the posterior sampler are provided in the Online Appendix.
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5 Empirical Results Based on the Long-Run Risks Model

We now turn to the empirical analysis based on the LRR model. Section 5.1 describes the asset

price data that are used in addition to the cash-flow data. We discuss the estimation results in

Section 5.2 and present the asset pricing implications of the estimated model in Section 5.3.

5.1 Data

In addition to the consumption and dividend data used in Sections 2 and 3 we now also use financial

market data from 1930:M1 to 2014:M12. This includes monthly observations of returns and prices

of the CRSP value-weighted portfolio of all stocks traded on the NYSE, AMEX, and NASDAQ.

Prices are also constructed on the per share basis as in Campbell and Shiller (1988b) and Hodrick

(1992). The stock market data are converted to real using the consumer price index (CPI) from

the Bureau of Labor Statistics. Finally, the ex-ante real risk-free rate is constructed as a fitted

value from a projection of the ex-post real rate on the current nominal yield and inflation over

the previous year. To run the predictive regression, we use monthly observations on the three-

month nominal yield from the CRSP Fama Risk Free Rate tapes and CPI series. Data sources and

summary statistics are available in the Online Appendix.

5.2 Model Estimation

Parameter Estimates. The prior distribution for the parameters associated with the exogenous

cash flow process are the same as the ones used in Section 3.2. Thus, we focus on the preference

parameters that affect the asset pricing implications of the model. Percentiles for the prior are

reported in the left-side columns of Table 7. The prior for the discount rate δ reflects beliefs about

the magnitude of the risk-free rate. For the asset pricing implications of our model, it is important

whether the IES is below or above 1. Thus, we choose a prior that covers the range from 0.3 to 3.5.

The 90% prior credible interval for the risk-aversion parameter γ ranges from 3 to 15, encompassing

the values that are regarded reasonable in the asset pricing literature. The prior for the persistence

and the innovation standard deviation of the preference shock is identical to the prior for the cash

flow parameters ρ and σ. Finally, we fix the variance σ2f,ε of the measurement error of the risk free

rate at 1% of the risk-free rate’s sample variance.

The remaining columns of Table 7 summarize the percentiles of the posterior distribution for the

model parameters. While the estimated cash flow parameters are, by and large, similar to those

reported in Table 6 when asset prices are not utilized, a few noteworthy differences emerge. First,
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Table 7: Prior and Posterior Estimates

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Household Preferences

ψ G .30 1.30 3.45 1.25 1.97 3.22

γ G 2.75 7.34 15.46 5.44 8.89 14.44

Preference Risk

ρλ U -.90 0 .90 .933 .959 .974

σ2λ IG .0003 .0005 .0015 .0003 .0004 .0005

Consumption Growth Process

ρ U -.90 0 .90 .949 .987 .997

ϕx U .05 .50 .95 .120 .215 .382

σ IG .0008 .0019 .0061 .0027 .0035 .0042

ρhc NT .27 .80 .999 .977 .991 .998

σ2hc IG .0011 .0043 .0283 .0075 .0096 .0109

ρhx NT .27 .80 .999 .982 .992 .998

σ2hx IG .0011 .0043 .0283 .0022 .0039 .0044

Dividend Growth Process

φ N -9.0 0.0 9.0 2.14 3.65 6.43

π N -9.0 0.0 9.0 .75 1.47 2.37

ϕd U .50 5.0 9.5 3.19 4.54 6.55

ρhd NT .28 .80 .999 .943 .969 .974

σ2hd IG .015 .0445 .208 .0404 .0447 .0565

Consumption Measurement Error

σε IG .0008 .0019 .0062 .0009 .0014 .0020

σaε IG .0007 .0029 .0389 .0038 .0141 .0213

Notes: The estimation results are based on annual consumption growth data from 1930 to 1960 and monthly con-

sumption growth data from 1960:M1 to 2014:M12. We allow for annual consumption measurement errors εat during

the periods from 1930 to 1948. We impose monthly measurement errors εt when we switch from annual to monthly

consumption data from 1960:M1 to 2014:M12. For the other three series we use monthly data from 1930:M1 to

2014:M12. We fix δ = 0.999. We fix µc = 0.0016 and µd = 0.0010 at their sample averages. We also fix the mea-

surement error variances (σad,ε)
2 and (σf,ε)

2 at 1% of the sample variance of dividend growth and the risk-free rate,

respectively. B, N , NT , G, and IG are beta, normal, truncated (outside of the interval (−1, 1)) normal, gamma, and

inverse gamma distributions, respectively.
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Figure 3: Posterior Distribution of ρ and ρhx
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Notes: We plot posterior densities of ρ from the estimation with cash flow data only from post-1930 (squared-line)

and from post-1959 samples (circled-line), respectively, and from the estimation with cash flow and asset return data

from post-1930 sample (solid-line).

the estimate of ρ, the persistence of the predictable cash flow component, increases from 0.952 to

0.987 to better capture the equity premium and persistence of the price-dividend ratio. The left

panel of Figure 3 overlays the posterior densities of ρ obtained with (post-1930 sample) and without

asset prices (post-1930 and post-1959 samples, respectively).19 Interestingly, the figure shows that

although the mode of the posterior increases and shifts to the right when asset prices are used in

estimation, the 90% credible interval ranging from 0.949 to 0.997 contains the posterior medians of

ρ from the cash-flow-only estimations.20

Second, the right panel of Figure 3 shows the posterior distribution of ρhx , the persistence of the

stochastic volatility process for xt. The modes of the three posteriors are quite similar, with the

cashflow-only posteriors having a longer left tail. Again, the posterior becomes more concentrated

as asset returns are added to the estimation. Third, in the cash-flow-only estimation, we imposed a

common stochastic log volatility process for the transitory and persistent component of consumption

growth, i.e., hx,t = hc,t, which lead to an estimate σ̂2hc = 0.0034. Once we add the returns to the set

19Results from the post-1959 sample with asset prices are virtually identical to the results from the post-1930

sample. For this reason, they are not plotted separately in Figure 3.
20In the Online Appendix we present additional misspecification tests for the consumption dynamics. To assess

the extent to which the increase in ρ leads to a decrease in fit of the consumption growth process, we re-estimate

model (4) conditional on various choices of ρ between 0.90 and 0.99 and re-compute the marginal data density for

consumption growth. The key finding is that the drop in the marginal data density by changing ρ from ρ̂ to 0.99

is small, indicating that there essentially is no tension between the parameter estimates obtained with and without

asset prices.
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of observables and remove the restriction, we obtain σ̂2hx = 0.0039 and σ̂2hc = 0.0096, reflecting asset

price information about the volatility of volatilities. Fourth, the estimate of ϕx drops from 0.430 to

0.215, which reduces the model-implied predictability of consumption growth by the price-dividend

ratio and brings it more in line with the data. Finally, the estimate of σ increases somewhat from

.0029 to .0035 to explain the highly volatile asset prices data.

Overall, the information from the market returns and risk-free rate reduces the posterior un-

certainty about the cash flow parameters and strengthens the evidence in favor of a time-varying

conditional mean of cash flow growth rates as well as time variation in the volatility components.

Table 7 also provides the estimated preference parameters. Importantly, the IES is estimated above

1 with a credible interval ranging from 1.3 to 3.2, while the posterior median estimate of the risk

aversion parameter γ is 8.9 and its interval estimate is 5.4 to 14.4.

Smoothed Mean and Volatility States. Figure 4 depicts smoothed estimates of the predictable

growth component xt. Because the estimate of xt is, to a large extent, determined by the time path

of consumption, the 90% credible bands (reflecting uncertainty about parameters and the latent

states) are much wider prior to 1960, when only annual consumption growth data were used in the

estimation. Post 1959, xt tends to fall in recessions (indicated by the shaded bars in Figure 4), but

periods of falling xt also occur during expansions. We overlay the smoothed estimate of xt obtained

from the estimation without asset price data. It is very important to note that the two estimates

are similar, which highlights that xt is, in fact, detectable based on cash flow data only. We also

depict the monthly consumption growth data post 1959, which confirms that xt indeed captures

low-frequency movements in consumption growth.

The smoothed volatility processes are plotted in Figure 4. Recall that our model has three

independent volatility processes, hc,t, hd,t, and hx,t, associated with the innovations to consumption

growth, dividend growth, and the predictable component, respectively. The most notable feature

of hc,t is that it captures a drop in consumption growth volatility that occurred between 1940

and 1960. In magnitude, this drop in volatility is much larger than a subsequent decrease around

1984, the year typically associated with the Great Moderation. The stochastic volatility process

for dividend growth hd,t seems to exhibit more medium- and high-frequency movements than hc,t.

Finally, the volatility of the persistent component, hx,t, exhibits substantial fluctuations over our

sample period, and it tends to peak during NBER recessions.

5.3 Asset Pricing Implications

Risk-Free Rate Estimate and Preference Shock. Figure 5 overlays the actual risk-free rate,

which is assumed to be subject to measurement errors, and the smoothed “true” or model-implied
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Figure 4: Smoothed States
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Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90% credible

intervals. Shaded bars indicate NBER recession dates. In the top panel, we overlay the smoothed state xt obtained

from the estimation without asset prices (red dashed line) and monthly consumption growth data (blue solid line).

risk-free rate. We find that the measurement errors are fairly small. To highlight the importance of

the preference shock, we also plot a counterfactual risk-free rate that would prevail in the absence of

xλ,t. It turns out that ex-post much of the risk-free rate fluctuations are explained by the preference

shock. In the absence of the preference shock, the process for the expected stochastic discount

factor implied by the predictable component of cash flow growth and the stochastic volatilities is

too smooth relative to the observed risk-free rate. The preference shock can generate additional

fluctuations in the expected discount factor without having a significant impact on asset returns

(as we will see below).

We assumed that the preference shock is independent of cash flows. In a production economy this

assumption will typically not be satisfied. Stochastic fluctuations in the discount factor generate

fluctuations in consumption and investment, which in turn affect cash flows. We assess the inde-
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Figure 5: Model-Implied Risk-Free Rate
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Notes: Blue line depicts the actual risk-free rate, and black line depicts the smoothed, model-implied risk-free rate

without measurement errors. Red dashed line depicts the model-implied risk-free rate with xλ,t = 0. The parameters

are fixed at their posterior median estimates.

pendence as follows. First, we compute the ex-post correlation between the smoothed preference

shock innovations ηλ,t and the cash-flow innovations ηc,t and ηx,t. We can do so for every parameter

draw Θs from the posterior distribution. The 90% posterior predictive intervals range from -0.09

to 0.03 for the correlation between ηλ,t and ηc,t and from 0 to 0.2 for the correlation between ηλ,t

and ηx,t. Second, we re-estimate our model under the assumption that ηλ,t and ηx,t are negatively

correlated. The resulting parameter estimates as well as the asset pricing moments are essentially

unaltered. According to a marginal data density comparison the more parsimonious specification

in which preference shocks and cash flows are independent is preferred. Based on these results we

conclude that there is no evidence that contradicts the independence assumption.

Determinants of the Equity Risk Premium. Figure 6 depicts the contribution of short-run

risk, σ2c,t, the long-run growth risk, σ2x,t, the preference risk, σ2λ, and the volatility risks, σ2wc and

σ2wx , to the risk premium at the posterior median parameter estimates; see (15). We compute

βs and λs based on the median posterior parameter estimates and multiply them by the median

volatility state estimates to construct the risk premium. The total (annualized) equity risk premium

is around 8.2%.21 The two major sources of the risk premium are the long-run growth risk and the

volatility risks and when combined they account for 83% of the risk premium. More specifically,

the 8.2% equity premium can be decomposed as follows. On average, the long-run growth risk

21The gross equity premium is E[rm,t+1 − rf,t] + 1/2σ2
rm ≈ 0.0615 + 0.5 ∗ 0.2262 − 0.0047 = 8.2%. If we were to

attribute the moving-average fluctuations in observed monthly consumption growth to “true” consumption growth

instead of measurement errors, the asset pricing implications of the model would essentially remain unchanged. The

equity premimum would rise by approximately 0.06%.
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Figure 6: Decomposition of the Equity Risk Premium
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Notes: We provide the decomposition of the risk premium (15). We compute βs and λs based on the median posterior

parameter estimates and multiply with the median volatility state estimates σ̂2
c,t and σ̂2

x,t to construct the model-

implied risk premium. On average, the risk premium is accounted for by the short-run risk (0.3%), long-run growth

risk (5.0%), preference risk (1.1%), and volatility risk (1.8%), respectively. The total in-sample market risk premium

(annualized) is around 8.2%.

generates a premium of 5.0%, the volatility risks account for 1.8%, the preference shock generates

1.1%, and the short-run volatility risk contributes 0.3%.

Determinants of Asset Price Volatility. Figure 7 depicts the time-varying contribution of the

fluctuations in growth prospects, xt, the preference shock, xλ,t, and the conditional variability of

growth prospects, σx,t, to the volatility of the price-dividend ratio and the risk-free rate.22 We

generate counterfactual volatilities by shutting down the estimated xt, xλ,t, and σx,t processes,

respectively. The ratios of the counterfactual and the actual asset price volatilities measure the

contribution of the non-omitted risk factors. We subtract this ratio from 1 to obtain the relative

contribution of the omitted risk factor shown in Figure 7. The credible bands reflect parameter

uncertainty and uncertainty about the latent states. While the preference shocks are important for

the risk-free rate, they contribute very little to the variance of the price-dividend ratio. Most of

the variability of the price-dividend ratio is, in equal parts, due to the variation in xt and σx,t. The

remaining risk factors σ2c,t and σ2d,t have negligible effects (less than 1% on average) on the asset

price volatilities, but are important for tracking the consumption and dividend growth data.

Matching Asset Price Moments. While asset pricing moments implicitly enter the likelihood

function of our state-space model, it is instructive to examine the extent to which sample moments

implied by the estimated state-space model mimic the sample moments computed from our actual

22The decomposition of market return volatility (not shown in Figure 7) is qualitatively similar to that of the

price-dividend ratio.
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Figure 7: Variance Decomposition for Market Returns and Risk-Free Rate
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Notes: Fraction of volatility fluctuations (in percent) in the price-dividend ratio and the risk-free rate that is due to

xt, xλ,t, and σ2
x,t, respectively. We do not present the graphs for σ2

c,t, σ
2
d,t since their time-varying shares are less

than 1% on average. See the main text for computational details.

data set. To do so, we report percentiles of the posterior predictive distribution for various sample

moments based on simulations from the posterior distribution of the same length as the data.23

Typically, the posterior predictive distribution is computed to reflect both parameter and shock

uncertainty. In our application the effect of the parameter uncertainty is an order of magnitude

smaller than the effect of the shock (or sampling) uncertainty. Thus, we decided to fix the param-

eters at their posterior median values as this facilitates a clear comparison between the two types

of model parameterization.

Results are summarized in Table 8. Means and standard deviations refer to annualized asset

prices. We first focus on the results from estimating the full model based on cash-flow data and

asset returns (full model estimation). All of the “actual” sample moments are within the 5th

23This is called a posterior predictive check; see Geweke (2005) for a textbook treatment. Specifically, the percentiles

are obtained using the following simulation: draw parameters Θs from the posterior distribution; for each Θs simulate

a trajectory Y s (same number of observations as in the actual sample) and compute the sample statistics S(Y s) of

interest.
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Table 8: Asset Return Moments

Parameter Estimates are Based On

Data Cash Flows Cash Flows Only

& Asset Returns

5% 50% 95% 5% 50% 95%

Mean (rm) 6.06 2.56 6.15 10.29 1.99 4.61 7.55

StdDev (rm) 19.8 14.9 22.6 46.1 11.0 16.6 28.3

AC1 (rm) -0.01 -0.30 -0.05 0.18 -0.29 -0.02 0.19

Corr (∆c, rm) 0.11 -0.10 0.10 0.29 -0.10 0.12 0.32

Mean (pd) 3.40 2.63 3.14 3.41 3.26 3.42 3.51

StdDev (pd) 0.45 0.17 0.32 0.76 0.11 0.18 0.39

AC1 (pd) 0.87 0.49 0.75 0.89 0.32 0.62 0.82

Mean (rf ) 0.37 -0.56 0.47 1.32 0.22 0.97 1.64

StdDev (rf ) 2.85 1.54 2.09 2.90 1.61 1.93 2.41

AC1 (rf ) 0.64 0.38 0.57 0.73 0.35 0.52 0.67

Notes: We present descriptive statistics for log returns of the aggregate stock market (rm), its correlation with

consumption growth (∆c), the log risk-free rate (rf ), and the log price-dividend ratio (pd). We report means (Mean),

standard deviations (StdDev), first-order sample autocorrelations (AC1), and correlations (Corr). Market returns,

the risk-free rate, and the price-dividend ratio refer to 12-month averages (in percent). Computing asset pricing

implications for the cash-flow-only estimates requires calibration of the preference parameters and the preference

shock xλ,t. We set δ, ψ, γ, ρλ, σ
2
λ to the median posterior estimates from Table 7.

and the 95th percentile of the corresponding posterior predictive distribution.24 In particular, the

model generates a sizable mean log market return with median value of 6.2%, and a sizeable equity

risk premium with a median value of about 8.2%. Consistent with the data, the model’s return

variability is about 22%. The high volatility of the market returns translates into a large variability

of the sample moments. As in the data, the model generates both a highly variable and persistent

price-dividend ratio. The median and 95th percentile of the price-dividend volatility distribution

are significantly larger than in other LRR calibrated models with Gaussian shocks. This feature

owes in part to the fact the model contains an independent dividend volatility process. Finally,

partly due to the preference shocks, the model is able to reproduce the observed sample moments

of the risk-free rate.

24Although not reported in the table this is also the case for the mean, standard deviation and first autocorrelation

moments of consumption and dividend growth.
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Figure 8: Posterior Distribution of Market Prices of Risks

0 0.05 0.1 0.15 0.2
0

10

20

30

40

-0.1 -0.08 -0.06 -0.04 -0.02 0
0

10

20

30

40

λxσx λwxσwx

Notes: We plot posterior densities of λxσx and λwxσwx from the estimation with cash flow data only from post-1930

(squared-line) and from post-1959 samples (circled-line), respectively, and from the estimation with cash flow and

asset return data from post-1930 sample (solid-line).

In Section 5.2 we noted that the parameter estimates for the cash flow processes change a bit once

asset pricing data are included. To assess the economic implications of the parameter differentials,

we combine the cash flow process parameter estimates reported in Table 6 (1930-2014 sample) with

the posterior median estimates of the preference parameters and the preference shock xλ,t from the

full estimation. Because the cash-flow-only model was estimated without the third volatility process

σ2x,t, we set hc,t = hx,t when re-computing the asset pricing implications of the LRR model. The

last three columns of Table 8 show that, due to a lower persistence ρ, the cash-flow-only estimates

generate a slightly lower mean and variance for the market return, and a slightly higher and less

volatile price-dividend ratio and risk-free rate. The standard deviation and autocorrelation of the

price-dividend ratio and the standard deviation of the risk-free rate lie just outside the posterior

predictive bands, whereas all other sample moments continue to fall within the bands. This confirms

that even the cash-flow-only estimates of the endowment process parameters can generate realistic

asset price fluctuations.25

Figure 8 compares the posterior distributions for the appropriately-scaled market prices of risk,

λxσx and λwxσwx , based on the estimation with and without asset prices. The posterior densities

are remarkably similar. In fact, the modes of the distributions are almost identical; the main

difference lies in the dispersion of the densities. This indicates that the lower risk premium (see

25Chen, Dou, and Kogan (2015) formalize this comparison by developing a measure of model fragility, roughly

speaking based on the discrepancy between the posterior medians obtained under the cash-flow-only estimation and

the estimation with asset returns.
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Table 8) obtained under the cash-flow-only estimate is due to smaller return exposures to the shocks

(βs in (15)). 26

Consumption Growth and Excess Return Predictability. Asset pricing models are often

evaluated based on their implications for the predictability of future cash flows and returns. In the

model the price-dividend ratio is determined by multiple state variables. Consequently, a VAR-

based predictive regression is a natural starting point. As in Bansal, Kiku, and Yaron (2012) we

estimate a first-order VAR that includes consumption growth, the price-dividend ratio, the real

risk-free rate, and the market return. Based on the estimated VAR coefficients we compute R2’s

for cumulative H-step-ahead consumption growth and excess returns:

H∑
h=1

∆ct+h and

H∑
h=1

(rm,t+h − rf,t+h−1).

While the VAR-based predictive checks are appealing from a theoretical perspective, much of the

empirical literature focuses on R2’s from univariate predictive regressions using the price-dividend

ratio as the only regressor. We subsequently consider both multivariate and univariate regressions.

Predictive checks are graphically summarized in Figure 9. We begin with a discussion of the

results depicted in the four panels of the top row of the figure. The sample statistics considered

are the R2 values obtained from predictability regressions. The top and bottom ends of the boxes

correspond to the 5th and 95th percentiles, respectively, of the posterior predictive distribution,

and the horizontal bars signify the medians. The predictive intervals reflect the fact that we are

repeatedly generating data from the model and computing a sample statistic for each of these

simulated trajectories.27 The small squares correspond to R2 statistics computed from “actual”

U.S. data.

The top left panel of Figure 9 depicts results for the VAR-based predictability regressions for

consumption growth. Based on multiple variables, consumption growth is highly predictable in the

data. At the one-year horizon the R2 is about 52% (see also Bansal, Kiku, Shaliastovich, and Yaron

(2014)). While the predictability diminishes over time, it is still nontrivial with an R2 of 12% at

26For completeness, using the SDF decomposition in Equation (A.18) in the Online Appendix, we also re-

port λi and λiσi for i = {c, x, λ, ww, wc} at our median parameter estimates. The resulting values are

{8.9, 695.2, 406.3,−26572824,−3391.0} and {0.03, 0.07, 0.16,−0.03,−0.01} respectively. These figures are consistent

with the variance decomposition of the risk-free rate and equity return presented earlier, whereby the former has a

relatively large exposure (β) to the preference shock while the latter has a large exposure to the growth and volatility

shock.
27To ease subsequent comparisons, we condition on the the posterior median estimates of the LRR model. This is

innocuous because the contribution of parameter uncertainty to the variability of the posterior predictive distributions

is small.
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Figure 9: Predictability Checks
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Notes: We fix the parameters at their posterior median estimates and simulate data sets. The red squares represent

R2 values obtained from the actual data. The boxes represent 90% posterior predictive intervals and the horizontal

lines represent medians. The “Benchmark” case is based on simulations with all five state variables xt, xλ,t, σ
2
x,t,

σ2
c,t, and σ2

d,t; The horizon is measured in years. The VAR-Based R2s are constructed as in Hodrick (1992). In the

bottom panel, the intersection of the solid lines indicates the R2 values obtained from the actual data.

the 10-year horizon. The key finding is that the data R2s lie within the 90% credible intervals

constructed from the model-implied predictive distribution. At the one-year horizon the median

of the model-implied R2 is somewhat lower than its data estimate, whereas over horizons of three

years or more, the medians are slightly larger than the data estimates.

Panel 2 in the top row of Figure 9, labeled “Univariate”, provides results for univariate consump-

tion growth predictability regressions. As for the VAR-based predictability checks, we simulate

the LRR model with all of its five state variables: xt, xλ,t, σ
2
x,t, σ

2
c,t, and σ2d,t. However, we only

use the price-dividend ratio to predict future consumption growth. As is well known, when the

price-dividend ratio is used as a single regressor, it produces low R2s. They are less than 5% for
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horizons from one to eight years and reach almost 10% at the ten-year horizon.28 The median R2

values obtained from regressions on model-generated data are between 10% to 15%, slightly higher

than in the actual data. However, the posterior predictive intervals range from 0 to 30% for the

one-year horizon and from 0 to about 50% for horizons longer than three years, which means that

there is no evidence in the data that contradicts our estimated asset pricing model.

Panels 3 and 4 in the top row of Figure 9 show the respective VAR and univariate predictive R2s

for future excess returns. It is noteworthy that the VAR median R2s of the model-based estimates

are almost perfectly aligned with the data-based estimates. The model also performs quite well

in terms of the univariate excess return predictability regressions. Specifically, for all horizons the

median of the model-implied distribution of R2s are quite close to actual data R2s and the model-

based credible intervals contain the R2 obtained from the actual data. The good performance is

obtained because, according to the model, the price-dividend ratio is the most important predictor

of long-horizon excess returns among the observables.29

While our model passes the predictive checks, the credible intervals depicted in Figure 9 are

wide. The high variability of the sampling distribution of the R2 measures under the LRR model

implies that despite their popularity the predictability regressions have little power to detect model

misspecifications. The diffuse and skewed sampling distributions of the R2 statistics are caused by

various non-standard features of predictive regressions. Due to overlapping time periods, residuals

are typically serially correlated and lagged residuals may be correlated with the predictor. Moreover,

the persistent component of the dependent variable (consumption growth or excess returns) is

dominated by iid shocks and the right-hand-side regressor (price-dividend ratio) is highly persistent

– a feature that can render the predictive regressions spurious (see Hodrick (1992) and Stambaugh

(1999)).30

As a final check, the bottom row of Figure 9 illustrates the model-implied joint distribution of R2s

for predicting consumption growth and excess returns. Each dot in these scatter plots is obtained

28The univariate-based low R2s for the first several years are consistent with the findings in Beeler and Campbell

(2012) Table 4—the slight differences attributed to the longer sample available here.
29In the Online Appendix we explore the relative importance of “growth” and “volatility” risks by simulating model

specifications that are only driven by (i) xt and σ2
x,t or (ii) xt. In Case (i) the posterior predictive distributions are

quite close to the ones in the two “univariate” subplots of Figure 9 because xt and σ2
x,t represent the key pricing state

variables. In Case (ii) the credible intervals are often too small and do not encompass the data estimates. Drive by

xt only, the model generates too much consumption predictability, thereby highlighting that volatility shocks play an

important role in lowering the model-implied predictability to a more realistic level.
30Valkanov (2003) derived an asymptotic distribution of the R2 under the assumption that the regressor follows

a local-to-unity process. He shows that the goodness-of-fit measure converges to a random limit as the sample size

increases. More recently, Bauer and Hamilton (2015) studied the sampling distribution of R2 measures in predictive

regressions for bond returns, which exhibit similar distortions.
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Figure 10: Dividend Growth Predictability and Dividend Yield Variance Decomposition
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Notes: (Predictability) We fix the parameters at their posterior median estimates and simulate data sets. The horizon

is measured in years. We run a univariate regression with the price-dividend ratio as predictor of future dividend

growth. For the multivariate regression, we consider a first-order VAR that includes consumption growth, dividend

growth, the price-dividend ratio, and the real risk-free rate. Based on the estimated coefficients we compute R2’s for

cumulative H-step-ahead dividend growth. The red squares represent R2 values obtained from the actual data. The

boxes represent 90% posterior predictive intervals and the horizontal lines represent medians. The VAR-based R2s

are constructed as in Hodrick (1992). (Variance Decomposition, Direct) We regress 15-year ex post returns, dividend

growth, and dividend yield, respectively, on a constant term and the dividend yield. (Variance Decomposition, VAR-

based) We infer long-run coefficients (k → ∞) from 1-year coefficients of the same VAR used for the predictability

analysis. Using the Campbell-Shiller approximation, the fractions of dividend yield variation attributed to each

source are provided as 1 ≈ Cov(dpt,
∑k
j=1 %

j−1rt+j)

V ar(dpt)
− Cov(dpt,

∑k
j=1 %

j−1∆dt+j)

V ar(dpt)
+

%kCov(dpt,dpt+k)

V ar(dpt)
. These components are

marked as R, D, and DP respectively.

by computing the two R2s based on a single model simulation. The intersection of the solid lines

indicates the R2 values computed from the actual data. The figure shows that the R2 values at

the 1-year and 5-year horizon are almost uniformly distributed over a rectangle. For every horizon

the observed R2s do not lie in the far tails of the posterior predictive distribution, which means

that the model is also able to jointly generate the observed consumption growth and excess return

predictability.

Dividend-Growth Predictability. Cochrane (2011) argues that there is very little dividend-

growth predictability at all horizons. This view is based on a univariate regression with the price-

dividend ratio as a predictor of future dividend growth. The data feature modest predictability,

with an R2 in the range of 4% to 9%, depicted by the red squares in the left panel of Figure 10.

However, dividend growth is found to be highly predictable both at short and long horizons, once

additional predictors are included in a VAR based predictive regression, with adjusted R2s as large

as 35% at the 10-year horizon (see Column 2 of Figure 10).31 Importantly, in both the univariate

31This evidence is consistent with Lettau and Ludvigson (2005), Koijen and van Binsbergen (2010), and Jagan-

nathan and Liu (2016) who report R2 values from a VAR-based regression that range from 10% to 40%.
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and VAR-based predictive regressions, the model implications for dividend growth predictability

line up with the data and cover the data R2s.

The strong evidence for dividend growth predictability has important implications for the vari-

ability of the log dividend yield dpt. Based on the Campbell and Shiller (1988a) approximate

present value identity it follows that

dpt ≈
k∑
j=1

%j−1rt+j −
k∑
j=1

%j−1∆dt+j + %kdpt+k, (19)

where % is an approximation constant based on the average dividend yield. Multiplying both sides

of (19) by the log dividend yield and taking expectations implies that the variance of the current

dividend yield can be attributed to its covariance with expected future returns, dividend growth

rates, and the expected future dividend yield, respectively, marked as “R”, “D”, and “DP” in

Figure 10 (see figure notes for details). As k approaches infinity, the dividend yield variability is

explained completely by covariation with expected returns and cash flow growth. We compute the

fraction of variability explained by the three covariances via “Direct” regression (setting k equal

to 15 years and separately regressing the “R”, “D”, and “DP” components on the dividend yield)

and “VAR-based” regression (inferring the k = ∞ decomposition from the coefficients of a VAR

estimated based on annual data). The estimates based on the direct regressions attribute much of

the variation in dividend yield to variation in discount rates (although not entirely), whereas the

point estimates of the VAR attribute about half of the variation to discount rates and the other

to dividend growth. Again, it is important to note that in both cases the model credible intervals

contain the data point estimates. Moreover, in both cases the credible intervals around the point

estimates are consistent with a view in which a large portion (about half) of the dividend yield

variability is driven by cash flows.32

6 Conclusion

We developed a non-linear Bayesian state-space model that utilizes mixed frequency data to study

the time series dynamics of consumption and its implications for asset pricing. We show that after

accounting for monthly measurement errors there is strong evidence for both a small persistent

predictable component as well as a stochastic volatility component in consumption growth. Impor-

tantly, this evidence emerges when the estimation uses information just from cash flows, namely,

32Albuquerque, Eichenbaum, Luo, and Rebelo (2016) also examine the 7- and 10-year correlations between cumu-

lative return and cumulative consumption and dividend growth. For brevity, we defer this analysis to the Online

Appendix where we show the model’s credible confidence bands contain the data estimates.



consumption, consumption and output, and consumption and dividends. It is further reinforced

and sharpened when the estimation uses consumption, dividends, and asset return data jointly. The

estimation identifies three volatility processes: one governing dynamics of the persistent cash-flow

growth component, and the other two controlling temporally independent shocks to consumption

and dividend growth. The model is able to successfully capture many asset pricing moments and

improve upon key predictability moments of previous LRR models.

Our findings raise the broader question of whether DSGE models, more generally, should have a

predictable component built into one or more of the exogenous processes that drive macroeconomic

fluctuations. If the goal of the modeling endeavor is to capture business cycle fluctuations at the

quarterly level, then the answer is no, because the signal in the data is not strong enough to render

macroeconomic predictions from a model without this predictable component to be inaccurate. But

if the goal is to rely on long-horizon implications of the model, for instance, with respect to asset

prices, then the answer is affirmative.
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Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach

Frank Schorfheide, Dongho Song, and Amir Yaron

The Online Appendix contains supplementary material and consists of the following sections:

A. Data Sources

B. The Measurement Error Model for Consumption

C. Solving the Long-Run Risks Model

D. State-Space Representations of the Empirical Models

E. Posterior Inference

F. Supplementary Figures and Tables

A Data Source

A.1 Nominal PCE

We download seasonally adjusted data for nominal PCE from NIPA Tables 2.3.5 and 2.8.5. We

then compute within-quarter averages of monthly observations and within-year averages of quarterly

observations.

A.2 Real PCE

We use Table 2.3.3., Real Personal Consumption Expenditures by Major Type of Product, Quantity

Indexes (A:1929-2014)(Q:1947:Q1-2014:Q4) to extend Table 2.3.6., Real Personal Consumption

Expenditures by Major Type of Product, Chained Dollars (A:1995-2014) (Q:1995:Q1-2014:Q4).

Monthly data are constructed analogously using Table 2.8.3. and Table 2.8.6.

A.3 Real Per Capita PCE: ND+S

The LRR model defines consumption as per capita consumer expenditures on nondurables and

services. We download mid-month population data from NIPA Table 7.1.(A:1929-2014)(Q:1947:Q1-

2014:Q4) and from Federal Reserve Bank of St. Louis’ FRED database (M:1959:M1-2014:M12).

We convert consumption to per capita terms.
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A.4 Dividend and Market Returns Data

Data are from the Center for Research in Security Prices (CRSP). The three monthly series from

CRSP are the value-weighted with-, RNt, and without-dividend nominal returns, RXt, of CRSP

stock market indexes (NYSE/AMEX/NASDAQ/ARCA), and the CPI inflation rates, πt. The

sample period is from 1929:M1 to 2014:M12. The monthly real dividend series are constructed as

in Hodrick (1992):

1. A normalized nominal value-weighted price series is produced by initializing P0 = 1 and

recursively setting Pt = (1 +RXt)Pt−1.

2. A normalized nominal divided series, DRaw
t , is obtained by recognizing that DRaw

t = (RNt −
RXt)Pt−1.

3. Following Robert Shiller we smooth out dividend series by aggregating 3 months values of the

raw nominal dividend series Dt =
∑2

i=0D
Raw
t−i and apply the following quarterly interpolation.

Here, Dt, Dt−3, ... is the last month of the quarter.

Dt−m = Dt −
m

3
(Dt −Dt−3), m ∈ {0, 1, 2} . (A.1)

4. We then compute the real dividend growth gd,t by subtracting the actual inflation from the

interpolated nominal dividend growth

gd,t = log(Dt)− log(Dt−1)− πt. (A.2)

Here inflation rates are computed using the log differences of the consumer price index (CPI)

from the Bureau of Labor Statistics.

Market returns, RNt+1, are also converted from nominal to real terms using the CPI inflation

rates and denoted by rm,t+1.

A.5 Ex Ante Risk-Free Rate

The ex ante risk-free rate is constructed as in the online appendix of Beeler and Campbell (2012).

Nominal yields to calculate risk-free rates are the CRSP Fama Risk Free Rates. Even though our

model runs in monthly frequencies, we use the three-month yield because of the larger volume and

higher reliability. We subtract annualized three-month inflation, πt,t+3, from the nominal yield,

if,t, to form a measure of the ex post (annualized) real three-month interest rate. The ex ante real
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risk-free rate, rf,t, is constructed as a fitted value from a projection of the ex post real rate on the

current nominal yield, if,t, and inflation over the previous year, πt−12,t :

if,t − πt,t+3 = β0 + β1if,t + β2πt−12,t + εt+3

rf,t = β̂0 + β̂1if,t + β̂2πt−12,t.

The ex ante real risk-free rates are available from 1929:M1 to 2014:M12.
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B The Measurement-Error Model for Consumption

For expositional purposes, we assume that the accurately measured low-frequency observations are

available at quarterly frequency (instead of annual frequency as in the main text). Correspondingly,

we define the time subscript t = 3(j − 1) +m, where month m = 1, 2, 3 and quarter j = 1, . . .. We

use uppercase C to denote the level of consumption and lowercase c to denote percentage deviations

from some log-linearization point. Growth rates are approximated as log differences and we use a

superscript o to distinguish observed from “true” values.

The measurement-error model presented in the main text can be justified by assuming that the

statistical agency uses a high-frequency proxy series to determine monthly consumption growth

rates. We use Z3(j−1)+m to denote the monthly value of the proxy series and Zq(j) the quarterly

aggregate. Suppose the proxy variable provides a noisy measure of monthly consumption. More

specifically, we consider a multiplicative error model of the form

Z3(j−1)+m = C3(j−1)+m exp(ε3(j−1)+m). (A.3)

The interpolation is executed in two steps. In the first step we construct a series C̃o3(j−1)+m, and

in the second step we rescale the series to ensure that the reported monthly consumption data add

up to the reported quarterly consumption data within the period. In Step 1, we start from the

level of consumption in quarter j − 1, Cq(j−1), and define

C̃o3(j−1)+1 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)
(A.4)

C̃o3(j−1)+2 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)
= Cq,o(j−1)

(
Z3(j−1)+2

Zq(j−1)

)

C̃o3(j−1)+3 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)(
Z3(j−1)+3

Z3(j−1)+2

)
= Cq,o(j−1)

(
Z3(j−1)+3

Zq(j−1)

)
.

Thus, the growth rates of the proxy series are used to generate monthly consumption data for

quarter q. Summing over the quarter yields

C̃q,o(j) =
3∑

m=1

C̃o3(j−1)+m = Cq,o(j−1)

[
Z3(j−1)+1

Zq(j−1)
+
Z3(j−1)+2

Zq(j−1)
+
Z3(j−1)+3

Zq(j−1)

]
= Cq,o(j−1)

Zq(j)

Zq(j−1)
. (A.5)
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In Step 2, we adjust the monthly estimates C̃o3(j−1)+m by the factor Cq,o(j)/C̃
q,o
(j) , which leads to

Co3(j−1)+1 = C̃o3(j−1)+1

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+1

Zq(j)
(A.6)

Co3(j−1)+2 = C̃o3(j−1)+2

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+2

Zq(j)

Co3(j−1)+3 = C̃o3(j−1)+3

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+3

Zq(j)

and guarantees that

Cq,o(j) =

3∑
m=1

Co3(j−1)+m.

We now define the growth rates goc,t = logCot − logCot−1 and gc,t = logCt − logCt−1. By taking

logarithmic transformation of (A.3) and (A.6) and combining the resulting equations, we can deduce

that the growth rates for the second and third month of quarter q are given by

goc,3(j−1)+2 = gc,3(j−1)+2 + ε3(j−1)+2 − ε3(j−1)+1 (A.7)

goc,3(j−1)+3 = gc,3(j−1)+3 + ε3(j−1)+3 − ε3(j−1)+2.

The derivation of the growth rate between the third month of quarter j − 1 and the first month of

quarter j is a bit more cumbersome. Using (A.6), we can write the growth rate as

goc,3(j−1)+1 = logCq,o(j) + logZ3(j−1)+1 − logZq(j) (A.8)

− logCq,o(j−1) − logZ3(j−2)+3 + logZq(j−1).

To simplify (A.8) further, we are using a log-linear approximation. Suppose we log-linearize an

equation of the form

Xq
(j) = X3(j−1)+1 +X3(j−1)+2 +X3(j−1)+3

around Xq
∗ and X∗ = Xq

∗/3, using lowercase variables to denote percentage deviations from the

log-linearization point. Then,

xq(j) ≈
1

3
(x3(j−1)+1 + x3(j−1)+2 + x3(j−1)+3).

Using (A.3) and the definition of quarterly variables as sums of monthly variables, we can apply

the log-linearization as follows:

logCq,o(j) − logZq(j) = log(Cq∗/Z
q
∗) + εq(j) −

1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
. (A.9)
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Substituting (A.9) into (A.8) yields

goc,3(j−1)+1 = gc,3(j−1)+1 + ε3(j−1)+1 − ε3(j−2)+3 + εq(j) − ε
q
(j−1) (A.10)

−1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
+

1

3

(
ε3(j−2)+1 + ε3(j−2)+2 + ε3(j−2)+3

)
.

An “annual” version of this equation appears in the main text.
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C Solving the Long-Run Risks Model

This section provides solutions for the consumption and dividend claims for the endowment process:

gc,t+1 = µc + xt + σc,tηc,t+1 (A.11)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

xt+1 = ρxt + σx,tηx,t+1

xλ,t+1 = ρλxλ,t + σληλ,t+1

σ2c,t+1 = (1− νc)(ϕcσ̄)2 + νcσ
2
c,t + σwcwc,t+1

σ2x,t+1 = (1− νx)(ϕxσ̄)2 + νxσ
2
x,t + σwxwx,t+1

σ2d,t+1 = (1− νd)(ϕdσ̄)2 + νdσ
2
d,t + σwdwd,t+1

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

The Euler equation for the economy is

Et [exp (mt+1 + ri,t+1)] = 1, i ∈ {c,m} , (A.12)

where

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gc,t+1 + (θ − 1)rc,t+1 (A.13)

is the log of the real stochastic discount factor (SDF), rc,t+1 is the log return on the consumption

claim, and rm,t+1 is the log market return. (A.13) is derived in Section C.5 below. Returns are

given by the approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0 + κ1pct+1 − pct + gc,t+1 (A.14)

rm,t+1 = κ0,m + κ1,mpdt+1 − pdt + gd,t+1.

The risk premium on any asset is

Et(ri,t+1 − rf,t) +
1

2
V art(ri,t+1) = −Covt(mt+1, ri,t+1). (A.15)

In Section C.1 we solve for the law of motion for the return on the consumption claim, rc,t+1. In

Section C.2 we solve for the law of motion for the market return, rm,t+1. The risk-free rate is

derived in Section C.3. All three solutions depend on linearization parameters that are derived in

Section C.4. Finally, as mentioned above, the SDF is derived in Section C.5.
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C.1 Consumption Claim

In order to derive the dynamics of asset prices, we rely on approximate analytical solutions. Specif-

ically, we conjecture that the price-consumption ratio follows

pct = A0 +A1xt +A1,λxλ,t +A2,cσ
2
c,t +A2,xσ

2
x,t (A.16)

and solve for A’s using (A.11), (A.12), (A.14), and (A.16).

From (A.11), (A.14), and (A.16)

rc,t+1 =
{
κ0 +A0(κ1 − 1) + µc + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(A.17)

+
1

ψ
xt +A1,λ(κ1ρλ − 1)xλ,t +A2,x(κ1νx − 1)σ2x,t +A2,c(κ1νc − 1)σ2c,t

+ σc,tηc,t+1 + κ1A1σx,tηx,t+1 + κ1A1,λσληλ,t+1 + κ1A2,xσwxwx,t+1 + κ1A2,cσwcwc,t+1

and from (A.11), (A.12), (A.14), and (A.16)

mt+1 = (θ − 1)
{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(A.18)

− γµ+ θ log δ − 1

ψ
xt + ρλxλ,t + (θ − 1)A2,x(κ1νx − 1)σ2x,t + (θ − 1)A2,c(κ1νc − 1)σ2c,t

− γσc,tηc,t+1 + (θ − 1)κ1A1σx,tηx,t+1 + {(θ − 1)κ1A1,λ + θ}σληλ,t+1

+ (θ − 1)κ1A2,xσwxwx,t+1 + (θ − 1)κ1A2,cσwcwc,t+1.

The solutions for A’s that describe the dynamics of the price-consumption ratio are determined

from

Et [mt+1 + rc,t+1] +
1

2
V art [mt+1 + rc,t+1] = 0

and they are

A1 =
1− 1

ψ

1− κ1ρ
, A1,λ =

ρλ
1− κ1ρλ

, A2,x =
θ
2(κ1A1)

2

1− κ1νx
, A2,c =

θ
2(1− 1

ψ )2

1− κ1νc
(A.19)

and A0 =
A1

0+A
2
0

1−κ1
, where

A1
0 = log δ + κ0 + µ(1− 1

ψ
) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

A2
0 =

θ

2

{
(κ1A1,λ + 1)2σ2λ + (κ1A2,xσwx)2 + (κ1A2,cσwc)

2
}
.

For convenience, (A.18) can be rewritten as

mt+1 − Et[mt+1] = λcσc,tηc,t+1 + λxσx,tηx,t+1 + λλσληλ,t+1 + λwxσwxwx,t+1 + λwcσwcwc,t+1.
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Note that λs represent the market price of risk for each source of risk. To be specific,

λc = γ, λx = (γ − 1

ψ
)

κ1
1− κ1ρ

, λλ = −θ − κ1ρλ
1− κ1ρλ

, (A.20)

λwx =
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νx)
(

κ1
1− κ1ρ

)2, λwc =
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νc)
.

Similarly, rewrite (A.17) as

rc,t+1 − Et[rc,t+1] = βc,cσc,tηc,t+1 + βc,xσx,tηx,t+1 + βc,λσληλ,t+1 + βc,wxσwxwx,t+1 + βc,wcσwcwc,t+1

where

βc,c = 1, βc,x = κ1A1, βc,λ = κ1A1,λ, βc,wx = κ1A2,x, βc,wc = κ1A2,c. (A.21)

The risk premium for the consumption claim is

Et(rc,t+1 − rf,t) +
1

2
V art(rc,t+1) = −Covt(mt+1, rc,t+1) (A.22)

= βc,xλxσ
2
x,t + βc,cλcσ

2
c,t + βc,λλλσ

2
λ + βc,wxλwxσ

2
wx + βc,wcλwcσ

2
wc .

C.2 Market Return

Similarly, using the conjectured solution to the price-dividend ratio

pdt = A0,m +A1,mxt +A1,λ,mxλ,t +A2,x,mσ
2
x,t +A2,c,mσ

2
c,t +A2,d,mσ

2
d,t (A.23)

the market return can be expressed as

rm,t+1 = κ0,m +A0,m(κ1,m − 1) + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 (A.24)

+ κ1,mA2,c,m(1− νc)(ϕcσ̄)2 + κ1,mA2,d,m(1− νd)(ϕdσ̄)2 + {φ+A1,m(κ1,mρ− 1)}xt

+ (κ1,mρλ − 1)A1,λ,mxλ,t +A2,x,m(κ1,mνx − 1)σ2x,t +A2,c,m(κ1,mνc − 1)σ2c,t

+ A2,d,m(κ1,mνd − 1)σ2d,t + πσc,tηc,t+1 + σd,tηd,t+1 + κ1,mA1,mσx,tηx,t+1 + κ1,mA1,λ,mσληλ,t+1

+ κ1,mA2,x,mσwxwx,t+1 + κ1,mA2,c,mσwcwc,t+1 + κ1,mA2,d,mσwdwd,t+1.
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Given the solution for A’s, Am’s can be derived as follows:

A0,m =
A1st

0,m +A2nd
0,m

1− κ1,m
(A.25)

A1,m =
φ− 1

ψ

1− κ1,mρ

A1,λ,m =
ρλ

1− κ1,mρλ

A2,x,m =
1
2 {(θ − 1)κ1A1 + κ1,mA1,m}2 + (θ − 1)(κ1νx − 1)A2,x

1− κ1,mνx

A2,c,m =
1
2(π − γ)2 + (θ − 1)(κ1νc − 1)A2,c

1− κ1,mνc

A2,d,m =
1
2

1− κ1,mνd
,

where

A1st
0,m = θ log δ + (θ − 1)

{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
− γµ+ κ0,m + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 + κ1,mA2,c,m(1− νc)(ϕcσ̄)2

+ κ1,mA2,d,m(1− νd)(ϕdσ̄)2

A2nd
0,m =

1

2

(
κ1,mA2,x,mσwx + (θ − 1)κ1A2,xσwx

)2

+
1

2

(
κ1,mA2,c,mσwc + (θ − 1)κ1A2,cσwc

)2

+
1

2

(
κ1,mA2,d,mσwd

)2

+
1

2

(
κ1,mA1,λ,mσλ + (θ − 1)κ1A1,λσλ + θσλ

)2

.

Rewrite the market-return equation (A.24) as

rm,t+1 − Et[rm,t+1]

= βm,cσc,tηc,t+1 + βm,xσx,tηx,t+1 + βm,dσd,tηd,t+1 + βm,λσληλ,t+1

+βm,wxσwxwx,t+1 + βm,wcσwcwc,t+1 + βm,wdσwdwd,t+1,

where

βm,c = π, βm,x = κ1,mA1,m, βm,d = 1, βm,λ = κ1,mA1,λ,m, (A.26)

βm,wx = κ1,mA2,x,m, βm,wc = κ1,mA2,c,m, βm,wd = κ1,mA2,d,m.

The risk premium for the dividend claim is

Et(rm,t+1 − rf,t) +
1

2
V art(rm,t+1) (A.27)

= −Covt(mt+1, rm,t+1)

= βm,xλxσ
2
x,t + βm,cλcσ

2
c,t + βm,λλλσ

2
λ + βm,wxλwxσ

2
wx + βm,wcλwcσ

2
wc .
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C.3 Risk-Free Rate

The model-driven equation for the risk-free rate is

rf,t = −Et [mt+1]−
1

2
V art [mt+1] (A.28)

= −θ log δ − Et [xλ,t+1] +
θ

ψ
Et [gc,t+1] + (1− θ)Et [rc,t+1]−

1

2
V art [mt+1] .

Subtract (1− θ)rf,t from both sides and divide by θ,

rf,t = − log δ − 1

θ
Et [xλ,t+1] +

1

ψ
Et [gc,t+1] +

(1− θ)
θ

Et [rc,t+1 − rf,t]−
1

2θ
V art [mt+1] (A.29)

From (A.11) and (A.18)

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t,

where

B1 =
1

ψ
, B1,λ = −ρλ, B2,x = −

(1− 1
ψ )(γ − 1

ψ )κ21

2(1− κ1ρ)2
, B2,c = −1

2
(
γ − 1

ψ
+ γ) (A.30)

and

B0 = −θ log δ − (θ − 1)
{
κ0 + (κ1 − 1)A0 + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
+ γµ− 1

2
{(θ − 1)κ1A2,xσwx}

2 − 1

2
{(θ − 1)κ1A2,cσwc}

2 − 1

2

{
((θ − 1)κ1A1,λ + θ)2σ2λ

}
.

C.4 Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the following system

of equations:

p̄di = A0,i(p̄di) +
∑

j∈{c,x,d}

A2,i,j(p̄di)× (ϕj σ̄)2

κ1,i =
exp(p̄di)

1 + exp(p̄di)

κ0,i = log(1 + exp(p̄di))− κ1,ip̄di.

The solution is determined numerically by iteration until reaching a fixed point of p̄di.
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C.5 Deriving the Intertemporal Marginal Rate of Substitution (MRS)

We consider a representative-agent endowment economy modified to allow for time-preference

shocks. The representative agent has Epstein and Zin (1989) recursive preferences and maximizes

her lifetime utility

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion, θ =
1−γ

1−1/ψ , and ψ is intertemporal elasticity of substitution. The ratio λt+1

λt
determines how agents trade

off current versus future utility and is referred to as the time-preference shock (see Albuquerque,

Eichenbaum, Luo, and Rebelo (2016)).

First conjecture a solution for Vt = φtWt. The value function is homogenous of degree 1 in wealth;

it can now be written as

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[(φt+1Wt+1)

1−γ ]
) 1
θ

] θ
1−γ

(A.31)

subject to

Wt+1 = (Wt − Ct)Rc,t+1.

Epstein and Zin (1989) show that the above dynamic program has a maximum.

Using the dynamics of the wealth equation, we substitute Wt+1 into (A.31) to derive

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ(Wt − Ct)
1−γ
θ
(
Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ

] θ
1−γ

. (A.32)

At the optimum, Ct = btWt, where bt is the consumption-wealth ratio. Using (A.32) and shifting

the exponent on the braces to the left-hand side, and dividing by Wt, yields

φ
1−γ
θ

t = (1− δ)λt
(
Ct
Wt

) 1−γ
θ

+ δ

(
1− Ct

Wt

) 1−γ
θ (

Et[(φt+1Rc,t+1)
1−γ ]

) 1
θ (A.33)

or simply

φ
1−γ
θ

t = (1− δ)λtb
1−γ
θ

t + δ(1− bt)
1−γ
θ
(
Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ . (A.34)

The first-order condition with respect to the consumption choice yields

(1− δ)λtb
1−γ
θ
−1

t = δ(1− bt)
1−γ
θ
−1(Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ . (A.35)
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Plugging (A.35) into (A.34) yields

φt = (1− δ)
θ

1−γ λ
θ

1−γ
t

(
Ct
Wt

) 1−γ−θ
1−γ

= (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t

(
Ct
Wt

) 1
1−ψ

. (A.36)

The lifetime value function is φtWt, with the solution to φt stated above. This expression for φt is

important: It states that the maximized lifetime utility is determined by the consumption-wealth

ratio.

(A.35) can be rewritten as

(1− δ)θλθt
(

bt
1− bt

)− θ
ψ

= δθEt[(φt+1Rc,t+1)
1−γ ]. (A.37)

Consider the term φt+1Rc,t+1:

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
Ct+1

Wt+1

) 1
1−ψ

Rc,t+1. (A.38)

After substituting the wealth constraint, Ct+1

Wt+1
= Ct+1/Ct

Wt/Ct−1 ·
1

Rc,t+1
= Gt+1

Rc,t+1
· bt
1−bt , into the above

expression, it follows that

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
bt

1− bt

) 1
1−ψ
(
Gt+1

Rc,t+1

) 1
1−ψ

Rc,t+1. (A.39)

After some intermediate tedious manipulations,

δθ(φt+1Rc,t+1)
1−γ = δθ(1− δ)θλθt+1

(
bt

1− bt

)− θ
ψ

G
− θ
ψ

t+1R
θ
c,t+1. (A.40)

Taking expectations and substituting the last expression into (A.37) yields

δθEt[
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1Rc,t+1] = 1. (A.41)

From here we see that the MRS in terms of observables is

Mt+1 = δθ
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1. (A.42)

The log of MRS is

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gt+1 + (θ − 1)rc,t+1, (A.43)

where xλ,t+1 = log(λt+1

λt
).
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D State-Space Representations of the Empirical Models

Below we describe the the state-space representation for the LRR model. The state-space represen-

tation for the cash-flow-only specifications can be obtained by eliminating the asset returns (rm,t+1

and rf,t) from the set of measurement equations.

D.1 Measurement Equations

In order to capture the correlation structure between the measurement errors at monthly frequency,

we assumed in the main text that 12 months of consumption growth data are released at the end

of each year. We will now present the resulting measurement equation. To simplify the exposition,

we assume that the monthly consumption data are released at the end of the quarter (rather than

at the end of the year). In the main text, the measurement equation is written as

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1(ht+1, ht) + Σuut+1

)
, ut+1 ∼ N(0, I). (A.44)

The selection matrix At+1 accounts for the deterministic changes in the vector of observables, yt+1.

Recall that monthly observations are available only starting in 1959:M1. For the sake of exposition,

suppose prior to 1959:M1 consumption growth was available at quarterly frequency. We further

assume that dividend growth data are always available in the form of time-aggregated quarterly

data. Then (we are omitting some of the o superscripts for observed series that we used in the

main text):

1. Prior to 1959:M1:

(a) If t+ 1 is the last month of the quarter:

yt+1 =


gqc,t+1

gqd,t+1

rm,t+1

rf,t

 , At+1 =


1
3

2
3 1 2

3
1
3 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .

(b) If t+ 1 is not the last month of the quarter:

yt+1 =


gqd,t+1

rm,t+1

rf,t

 , At+1 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .
2. From 1959:M1 to present:
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(a) If t+ 1 is the last month of the quarter:

yt+1 =



gc,t+1

gc,t

gc,t−1

gqd,t+1

rm,t+1

rf,t


, At+1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(b) If t+ 1 is not the last month of the quarter:

yt+1 =


gqd,t+1

rm,t+1

rf,t

 , At+1 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .
The relationship between observations and states (ignoring the measurement errors) is given by

the approximate analytical solution of the LRR model described in Section C:

gc,t+1 = µc + xt + σc,tηc,t+1 (A.45)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

rm,t+1 = {κ0,m + (κ1,m − 1)A0,m + µd}

+ (κ1,mA1,m)xt+1 + (φ−A1,m)xt + (κ1,mA1,λ,m)xλ,t+1 −A1,λ,mxλ,t + πσc,tηc,t+1 + σd,tηd,t+1

+ (κ1,mA2,x,m)σ2x,t+1 −A2,x,mσ
2
x,t + (κ1,mA2,c,m)σ2c,t+1 −A2,c,mσ

2
c,t + (κ1,mA2,d,m)σ2d,t+1 −A2,d,mσ

2
d,t

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

In order to reproduce (A.45) and the measurement-error structure described in Sections 2.1 and 3.2,

we define the vectors of states st+1 and svt+1 as
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st+1 =



xt+1

xt

xt−1

xt−2

xt−3

xt−4

σc,tηc,t+1

σc,t−1ηc,t

σc,t−2ηc,t−1

σc,t−3ηc,t−2

σc,t−4ηc,t−3

σεεt+1

σεεt

σεεt−1

σεεt−2

σεεt−3

σεεt−4

σqε ε
q
t+1

σqε ε
q
t

σqε ε
q
t−1

σqε ε
q
t−2

σd,tηd,t+1

σd,t−1ηd,t

σd,t−2ηd,t−1

σd,t−3ηd,t−2

σd,t−4ηd,t−3

xλ,t+1

xλ,t



, svt+1 =



σ2
x,t+1

σ2
x,t

σ2
c,t+1

σ2
c,t

σ2
d,t+1

σ2
d,t


. (A.46)

It can be verified that the coefficient matrices D, Z, Zv, and Σe are given by
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Z
=

               0
1

0
0

0
0

1
0

0
0

0
1

−
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

1
0

0
0

0
1

0
0

0
0

1
−

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
1

0
0

0
0

1
0

0
−

1 3
−

1 3
2 3
−

2 3
1 3

1 3
1

0
0
−

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
−

1
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1
−

1
0

0
0

0
0

0
0

0
0

0
0

0
φ 3

2
φ 3

φ
2
φ 3

φ 3
π 3

2
π 3

π
2
π 3

π 3
0

0
0

0
0

0
0

0
0

0
1 3

2 3
1

2 3
1 3

0
0

µ
r,
1

µ
r,
2

0
0

0
0

µ
r,
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

µ
r,
4

0
0

0
0

µ
r,
5

µ
r,
6

0
B

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
B

1
,λ

0

               

Z
v

=

               0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

µ
r,
7

µ
r,
8

µ
r,
9

µ
r,
1
0

µ
r,
1
1

µ
r,
1
2

0
B

2
,x

0
B

2
,c

0
0

               ,
D

=

               µ µ µ µ µ 3µ
d

µ
r,
0

B
0

               ,
Σ
u

=

               0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
σ
a d
,ε

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
σ
f
,ε

               .
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The coefficients µr,0 to µr,12 are obtained from the solution of the LRR model:

µr,0

µr,1

µr,2

µr,3

µr,4

µr,5

µr,6


=



κ0,m +A0,m(κ1,m − 1) + µd

κ1,mA1,m

φ−A1,m

π

1

κ1,mA1,λ,m

−A1,λ,m


,



µr,7

µr,8

µr,9

µr,10

µr,11

µr,12


=



κ1,mA2,x,m

−A2,x,m

κ1,mA2,c,m

−A2,c,m

κ1,mA2,d,m

−A2,d,m


.

D.2 State Transition Equations

Using the definition of st+1 in (A.46), we write the state-transition equation as

st+1 = Φst + vt+1(ht). (A.47)

Conditional on the volatilities ht, this equation reproduces the law of motion of the two persistent

conditional mean processes

xt+1 = ρxt + σx,tηx,t+1 (A.48)

xλ,t+1 = ρλxλ,t + σληλ,t+1

and it contains some trivial relationships among the measurement-error states. The matrices Φ

and vt+1(ht) are defined as

Φ =



ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρλ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


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and

vt+1(ht) =



σx,tηx,t+1

0

0

0

0

0

σc,tηc,t+1

0

0

0

0

σεεt+1

0

0

0

0

0

σqε ε
q
t+1

0

0

0

σd,tηd,t+1

0

0

0

0

σληλ,t+1

0



.

The law of motion of the three persistent conditional log volatility processes is given by

ht+1 = Ψht + Σhwt+1, (A.49)

where

ht+1 =


hx,t+1

hc,t+1

hd,t+1

 , Ψ =


ρhx 0 0

0 ρhc 0

0 0 ρhd



Σh =


σhx

√
1− ρ2hx 0 0

0 σhc

√
1− ρ2hc 0

0 0 σhd

√
1− ρ2hd

 , wt+1 =


wx,t+1

wc,t+1

wd,t+1

 .
We express

σx,t = ϕxσ exp(hx,t), σc,t = ϕcσ exp(hc,t), σd,t = ϕdσ exp(hd,t),

which delivers the dependence on ht in the above definition of vt+1(·). ϕc = 1 is normalized.
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E Posterior Inference

E.1 Model With Asset Prices

To construct a posterior sampler for the LRR model (see Section 5 for estimation results), we use

a particle-filter approximation of the likelihood function, constructed as follows. Our state-space

representation, given the measurement equation (A.44) and the state transition equations (A.47)

and (A.49), is linear conditional on the volatility states (ht+1, ht). The particle filter uses a swarm

of particles {zjt ,W
j
t }Mj=1 to approximate

E[h(zt)|Y1:t] ≈
1

M

M∑
j=1

W j
t h(zjt ). (A.50)

Throughout this section we omit the parameter vector Θ from the conditioning set. Here h(·) is

an integrable function of zt and the approximation ≈, under suitable regularity conditions, can be

stated formally in terms of a strong law of large numbers and a central limit theorem. In general,

zjt would be composed of hjt , h
j
t−1, and sjt . However, given that the state-space model is linear

conditional on (ht, ht−1), we can replace sjt by[
vec
(
E[st|hjt , h

j
t−1, Y1:t]

)
, vech

(
V ar[st|hjt , h

j
t−1, Y1:t

])]′
,

where vech(·) stacks the non-redundant elements of a symmetric matrix. The use of the vector of

conditional means and covariance terms for st in the definition of the particle zjt leads to a vari-

ance reduction in the particle filter approximation of the likelihood function. The implementation

of the particle filter is based on Algorithm 13 in Herbst and Schorfheide (2015). The particle-

filter approximation of the likelihood function is embedded into a fairly standard random walk

Metropolis-Hastings algorithm (see Chapter 9 of Herbst and Schorfheide (2015)).

E.2 Models Without Asset Prices

The estimation of the cash-flow only models in Sections 2 and 3 is considerably easier because the

volatility states do not affect the conditional means of the observables. As before in the model

with asset prices, the state variables are the model-implied monthly cash flows and the the latent

volatility processes hi,t. Let Θcf denote the parameters that denote that cash-flow processes, Θh

the parameters that control the evolution of the volatility processes, and HT the sequence of latent

volatilities.

The MCMC algorithm iterates over three conditional distributions: First, a Metropolis-Hastings

step is used to draw from the posterior of Θcf conditional on
(
Y, (HT )(s),Θ

(s−1)
h

)
. Second, we
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draw the sequence of stochastic volatilities HT conditional on
(
Y,Θ

(s)
cf ,Θ

(s−1)
h

)
using the algorithm

developed by Kim, Shephard, and Chib (1998). It consists of transforming a nonlinear and non-

Gaussian state space form into a linear and approximately Gaussian one, which allows the use of

simulation smoothers such as those of Carter and Kohn (1994) to recover estimates of the residuals

ηi,t. Finally, we draw from the posterior of the coefficients of the stochastic volatility processes,

Θh, conditional on
(
Y,HT (s),Θ

(s)
cf

)
.



Schorfheide, Song, and Yaron (2017): Online Appendix A-22

F Supplementary Figures and Tables

This section provides supplementary empirical results that are referenced in the main paper.

• Table A-1: provides estimates of alternative specifications of the consumption growth model

considered in Section 2.2 and supplements Table 1.

• Table A-2: provides estimates of a bivariate cash-flow model in which consumption and divi-

dends are cointegrated. These estimates are referenced in the part Cointegration of Dividends

and Consumption. of Section 3.2.

• Table A-3: This table appeared in the main text of an earlier version of the paper. Comparing

the estimates of ρ from Table 6 based on cash-flow data only to the estimate obtained in

Table 7 by estimating the LRR model based on cash flow and asset return data, we observed

that the posterior mean increases from 0.94 and 0.95, respectively, to 0.99 once asset returns

are included. To assess the extent to which the increase in ρ leads to a decrease in fit of

the consumption growth process, we re-estimate model (4) conditional on various choices of

ρ between 0.90 and 0.99 and re-compute the marginal data density for consumption growth.

The results are summarized in the table. The key finding is that the drop in the marginal

data density by changing ρ from ρ̂ to 0.99 is small, indicating that there essentially is no

tension between the parameter estimates obtained with and without asset prices.

• Figure A-1: contains further posterior predictive checks for the R2 values associated with

consumption and return predictability regressions. It supplements Figure 9 in Section 5.3 and

shows model how the model-implied predictive distribution of the R2’s changes as different

sources of risk are switched off. These results are mentioned in the main paper in Footnote 25.

• Figure A-2: This figure appeared in the main text of an earlier version of the paper. It exam-

ines the model’s implication with respect to the long horizon correlation between consumption

growth (dividend growth) and returns – that is the H-th horizon correlation

corr(

H∑
h=1

rm,t+h,

H∑
h=1

∆ct+h).

Our model performs well along this dimension. Under the “Benchmark” specifications (all

shocks are active), the 10-year consumption growth and 10-year return have a correlation of

0.3, but with a very wide credible interval that encompasses -0.2 to 0.7, which importantly

contains the data estimate. The analogous correlation credible interval for dividend growth

ranges from 0 to 0.8, with the data at 0.4 and again very close to the model median estimate.
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It is noteworthy that these correlation features are primarily driven by “Growth and Volatility

Risks.” Albuquerque, Eichenbaum, Luo, and Rebelo (2016) highlight that preference shocks

improve the LRR model-performance for these long horizon correlations. The “Preference

Risk” subplots provide the correlations when all shocks except xλ,t are shutdown. These

plots show that the preference shocks improve fit by generating lower credible intervals for

consumption, yet deteriorate fit by generating way too large long horizon correlations for

dividends.

Table A-1: Posterior Median Estimates of Consumption Growth Processes

Prior Distribution Posterior Estimates

State-Space Model / Measurement Error Specification IID ARMA

M&A No ME No ME M M M M (1,2)

AR(2) ρε 6= 0 ρη 6= 0 NoAveOut

Distr. 5% 50% 95% (1) (2) (3) (4) (5) (6) (7) (8) (9)

µc N -.007 .0016 .0100 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0016

ρ U -.90 0 .90 .918 -.287 -.684 .918 .918 .919 .919 - .913

ρ2 U -.90 0 .90 - - -.353 - - - - - -

ϕx U .05 0.5 .95 .681 - .669 .704 .644 .681 - -

U .1 1.0 1.9 - 1.12 .482 - - - - - -

σ IG .0008 .0019 .0061 .0018 .0022 .0027 .0018 .0017 .0019 .0018 .0033 .0032

σε IG .0008 .0019 .0061 .0018 - .0018 .0019 .0018 .0018 - -

σaε IG .0007 .0029 .0386 .0011 - - - - - - - -

ρε U -.90 0 .90 - - - - .060 - - - -

ρη U -.90 0 .90 - - - - - -.046 - - -

ζ1 N -8.2 0 8.2 - - - - - - - - -1.14

ζ2 N -8.2 0 8.2 - - - - - - - - .302

ln p(Y ) 2887.1 2870.8 2870.3 2886.2 2883.9 2885.8 2886.5 2863.2 2884.0

Notes: The estimation sample is from 1959:M2 to 2014:M12. We denote the persistence of the growth component xt
by ρ (and ρ2 if follows an AR(2) process), the persistence of the measurement errors by ρε, and the persistence of ηc,t
by ρη. We report posterior median estimates for the following measurement error specifications of the state-space

model: (1) monthly and annual measurement errors (M&A); (2) no measurement errors (no ME); (3) no measurement

errors with AR(2) process for xt (no ME AR(2)); (4) monthly measurement errors (M); (5) serially correlated monthly

measurement errors (M, ρε 6= 0); (6) serially correlated consumption shocks ηc,t (M, ρη 6= 0, ρ > ρη); (7) monthly

measurement errors that do not average out at annual frequency (M, NoAveOut). In addition we report results for

the following models: (8) consumption growth is iid; (9) consumption growth is ARMA(1,2).
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Table A-2: Posterior Estimates: Cointegration of Consumption and Dividends

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Consumption

ρ U -.9 0 .9 .907 .951 .984

ϕx U .05 .50 .95 .314 .515 .946

σ IG .0008 .0019 .0061 .0022 .0028 .0034

ρhc NT .27 .80 .999 .976 .992 .999

σ2hc IG .0013 .0043 .0283 .0012 .0037 .0117

Dividends

φdc U -9.0 0 9.0 -7.10 -5.66 -4.64

ρs U -.9 0 .9 .997 .998 .999

ϕs U 15 150 285 86.5 148.0 241.2

ρhs NT .27 .80 .999 .995 .998 .999

σ2hs IG .0007 .0029 .0392 .0008 .0014 .0028

Measurement Errors

σε IG .0008 .0019 .0061 .0010 .0012 .0015

σaε IG .0008 .0029 .0387 .0005 .0044 .0109

σad,ε IG .0008 .0029 .0387 - .10 -

Notes: We utilize the mixed-frequency approach in the estimation: For consumption we use annual data from 1930

to 1959 and monthly data from 1960:M1 to 2014:M12; we use monthly dividend annual growth data from 1930:M1 to

2014:M12. For consumption we adopt the measurement error model of Section 2.1. We allow for annual consumption

measurement errors εat during the periods from 1930 to 1948. We impose monthly measurement errors εt when we

switch from annual to monthly consumption data from 1960:M1 to 2014:M12. We fix µc = 0.0016 and µd = 0.0010 at

their sample averages. Moreover, we also fix the measurement error variances (σad,ε)
2 and (σf,ε)

2 at 1% of the sample

variance of dividend growth and the risk-free rate, respectively. N , NT , G, IG, and U denote normal, truncated

(outside of the interval (−1, 1)) normal, gamma, inverse gamma, and uniform distributions, respectively.
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Table A-3: Marginal Data Densities for Consumption Growth Model

Estimation Fixed ρ Estimated ρ

Sample 0.90 0.94 0.95 0.97 0.99

1959-2014 2925.9 2935.9 2935.5 2934.8 2927.5 2930.1 (ρ̂ = 0.95)

1930-2014 2912.7 2914.2 2913.3 2912.1 2909.3 2909.9 (ρ̂ = 0.94)

Notes: We estimate the consumption-only model (4) conditional on various choices of ρ (“Fixed ρ”) and compute

marginal data densities. We also report the marginal data densities for the estimated values of ρ (“Estimated ρ”)

based on the posterior mean estimates (in parentheses) from Table 3.

Figure A-1: Predictability Checks
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Notes: We fix the parameters at their posterior median estimates. The red squares represent R2 values obtained from

the actual data. The boxes represent 90% posterior predictive intervals and the horizontal lines represent medians.

The “Benchmark” case is based on simulations with all five state variables xt, xλ,t, σ
2
x,t, σ

2
c,t, and σ2

d,t; “Growth and

Volatility Risk” is based on xt and σ2
x,t only; “Growth Risk” is based on xt only. The horizon is measured in years.

The VAR-Based R2s are constructed as in Hodrick (1992).
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Figure A-2: Correlation between Market Return and Cash-Flow Growth Rates

Corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆ct+h) Corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆dt+h)

Benchmark Preference Risk Benchmark Preference Risk

2 4 6 8 10

0

0.5

1

Horizon
2 4 6 8 10

0

0.5

1

Horizon
2 4 6 8 10

0

0.5

1

Horizon
2 4 6 8 10

0

0.5

1

Horizon

Notes: We fix the parameters at their posterior median estimates. The “Benchmark” case is based on simulations

with all five state variables xt, xλ,t, σ
2
x,t, σ

2
c,t, and σ2

d,t; “Preference Risk” is based on xλ,t only.
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