Optimal Estimation of Two-Way Effects under Limited Mobility

Xu Cheng Sheng Chao Ho Frank Schorfheide

University of Pennsylvania

FRB Philadelphia Seminar September 2023

INTRODUCTION

- Matched Data / Interaction-Based Model
 - student and teacher;
 - employee and employer;
 - patient and care provider
- Agent Specific Parameters for Unobserved Heterogeneity
 - modeled by two-way effects, outcome depends on pair, i.e., $\alpha_i + \beta_j$;
 - allow for assortative matching;
 - condition on the matching network.
- Running Example: estimation of teacher-value added.

INTRODUCTION: SCARCE INFORMATION IS A CHALLENGE

- Limited Observations Per Agent
 - Teachers: limited class size;
 - Students: observations for only a few years
- Limited Mobility Across Agents
 - Identification of teacher value-added is based on students moving from one teacher to another.
 - Limited mobility can be represented as weak connectivity in a bipartite graph connecting teachers and students.

Contribution: A New Estimator Robust to Weak Connectivity

- Empirical Bayes (shrinkage) estimator for two-way effects.
- Adaptive to level of mobility/connectivity through hyperparameter estimation based on unbiased risk criterion.
- We establish asymptotic optimality within a class of estimator.
- Monte Carlo study and empirical application: estimation of teacher value-added based on a matched student-teacher data set.

LITERATURE I

- OLS Estimator for Two-Way Effects is Widely Applied
 - employer-employee: Abowd, Kramarz, and Margolis (1999); Card, Heining, and Klein (2013); etc.
 - student-teacher, school-teacher: Clotfelter, Ladd, and Vigdor (2007); Jackson, Rockoff, and Staiger (2014); Mansfield (2015); etc.
 - demand and supply of health care: Finkelstein, Gentzkow, and Williams (2016).
- Issues with OLS Estimator for Two-Way Effects
 - Jochmans and Weidner (2019): finite-sample variance and large-sample consistency depend on connectivity measures of the network.
 - Verdier (2020) studies homogeneous regression coefficient estimation.

LITERATURE II

- Shrinkage Estimation and Empirical Bayes Methods
 - James and Stein (1961); Lindley (1962); Stein (1962); Efron and Morris (1972, 1973); Stein (1981); etc.
 - Xie, Kou, and Brown (2012, 2016); Brown, Mukherjee, and Weinstein (2018); Kwon (2021); etc.
 - Robbins (1951, 1956); Brown and Greenshtein (2009); Koenker and Mizera (2014);
 Gu and Koenker (2017a,b); Liu, Moon, and Schorfheide (2020); etc.
- Existing Shrinkage Estimation for Teacher Value Added
 - one-way effect: Kane, Rockoff, and Staiger (2006); Kane and Staiger (2008);
 Chetty, Friedman, and Rockoff (2014); Gilraine, Gu, and McMillan (2020); Kwon (2021); etc.

Econometric Model

• Model, e.g., for test score:

$$y_{it} = \alpha_i + \beta_{j(i,t)} + x'_{it}\gamma + u_{it},$$

– student
$$i \in \mathcal{S} = \{1, \dots, r\}$$
, r is "rows";

- teacher $j(i,t) \in \mathcal{T} = \{1, \ldots, c\}$ of student i in time t, c is "columns";
- $u_{it} \mid j(\cdot), \alpha_{1:r}, \beta_{1:c} \sim_{iid} (0, \sigma^2);$
- for presentation, we assume there are no covariates $x_{it}.$
- In this talk: estimate $\beta = (\beta_1, \cdots, \beta_c)'$, e.g., teacher value added.
- Normalization: $1'_c \beta = 0$.

Econometric Model

Vector Notation

$$Y = B_1 \alpha + B_2 \beta + U, \quad U \mid (B, \theta) \sim (0, \sigma^2 I)$$

= $B\theta + U,$

•
$$\boldsymbol{Y} = (y_{11}, \cdots, y_{1T_1}, \cdots, y_{r1}, \cdots, y_{rT_r})' \in \mathbb{R}^{N \times 1}$$

- $B_1 \in \mathbb{R}^{N imes r}$ is matrix of indicators for student i = 1, ..., r
- $B_2 \in \mathbb{R}^{N \times c}$ is matrix of indicators for the teachers j = 1, ..., c matched to each student in each time period
- $B = [B_1, B_2]$: all the analysis is conditional on B

•
$$\boldsymbol{\theta} = (\boldsymbol{\alpha}', \boldsymbol{\beta}')'$$

- Simplifications (for expositional purposes in the theory part of the talk):
 - Each period t, a student i is taught by a single teacher j.
 - In the examples: class size is constant $\kappa = r/c$ across teachers and time.
- Asymptotics:
 - T is fixed
 - $-r, c \longrightarrow \infty.$

- $1. \ {\rm Prior}$ distribution with hyperparameter and posterior mean estimator
- $2. \ \mbox{Hyperparameter selection based on minimization of unbiased risk estimate}$
- 3. Identification and optimality
- 4. (...)

ESTIMATION: OVERVIEW

- Hierarchical Model and Empirical Bayes Method
 - Derive posterior mean estimates of lpha and eta using an hierarchical prior

 $p(\boldsymbol{\alpha}, \boldsymbol{\beta}|B, \boldsymbol{\lambda}).$

- Hyperparameter λ selection by minimization of an unbiased risk estimate (URE).
- Asymptotic Optimality
 - Frequentist risk (instead of integrated risk).
 - λ selection with URE minimization is robust to misspecification of prior distribution.

ESTIMATION: FACTORIZATION OF PRIOR

• Bayesian inference combines

• From an economic perspective, the following factorization of the prior is natural and allows for sorting in the link formation:

$$p(B, \alpha, \beta | \lambda) = p(\alpha, \beta | \lambda) p(B | \alpha, \beta, \lambda).$$

• Because B is observed, posterior inference only requires

 $p(\boldsymbol{\alpha},\boldsymbol{\beta}|B,\boldsymbol{\lambda}),$

which we will use as our starting point.

ESTIMATION: PRIOR

- Hyperparameter $\lambda = (\mu, \lambda_{\alpha}, \lambda_{\beta}, \phi).$
- Define

$$\Lambda = \begin{bmatrix} \lambda_\alpha \cdot I_r & 0 \\ 0 & \lambda_\beta \cdot I_r \end{bmatrix}, \quad D = \operatorname{diag}(B'B), \quad \mathcal{A} = D^{-1/2}(B'B)D^{-1/2} - I.$$

• Prior Distribution:

$$\begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix} | (B, \boldsymbol{\lambda}) \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{1}_{r\mu} \\ \mathbf{0}_{c} \end{bmatrix}, \ \sigma^{2} \begin{bmatrix} \Lambda^{1/2} \left(-\phi \mathcal{A} + I_{r+c} \right) \Lambda^{1/2} \end{bmatrix}^{-1} \right)$$

• No sorting for $\phi = 0$.

ESTIMATION: POSTERIOR MEAN

• Shrinking the OLS estimator to common mean vector:

$$\hat{\boldsymbol{ heta}} = \mathcal{R}S_1(\boldsymbol{\lambda})\hat{\boldsymbol{ heta}}^{LS} + \mathcal{R}(I - S_1(\boldsymbol{\lambda}))\boldsymbol{v}.$$

ESTIMATION: BENCHMARK – INFEASIBLE ORACLE SHRINKAGE

- Consider Estimation of $oldsymbol{eta} \in \mathbb{R}^{c imes 1}$, e.g., teacher value added
- Quadratic Loss:

$$L(\hat{\boldsymbol{eta}}(\boldsymbol{\lambda}),\boldsymbol{eta}) := rac{1}{c}\sum_{j=1}^{c} \left(\hat{eta}_{j}(\boldsymbol{\lambda}) - eta_{j}
ight)^{2}.$$

• Benchmark for Optimality (assumes known β):

$$\hat{\boldsymbol{\beta}}^{OL}(\boldsymbol{\beta}) := \hat{\boldsymbol{\beta}} \big(\boldsymbol{\lambda}^{OL}(\boldsymbol{\beta}) \big), \quad \boldsymbol{\lambda}^{OL}(\boldsymbol{\beta}) := \operatorname*{argmin}_{\boldsymbol{\lambda} \in \Lambda} L(\hat{\boldsymbol{\beta}}(\boldsymbol{\lambda}), \boldsymbol{\beta}).$$

ESTIMATION: FEASIBLE URE SHRINKAGE

• Frequentist Risk:

$$R(\boldsymbol{\lambda}) = \mathbb{E}_{B,\boldsymbol{\theta}}[L(\hat{\boldsymbol{\beta}}(\boldsymbol{\lambda}),\boldsymbol{\beta})].$$

• We derive an unbiased risk estimate (function of the data) such that:

$$\mathbb{E}_{B,\boldsymbol{\theta}}[URE(\boldsymbol{\lambda})] = R(\boldsymbol{\lambda}).$$

• Proposed Shrinkage Estimator:

$$\hat{\boldsymbol{eta}}^{URE} := \hat{\boldsymbol{eta}}(\boldsymbol{\lambda}^{URE}), \quad \boldsymbol{\lambda}^{URE} := \operatorname*{argmin}_{\boldsymbol{\lambda} \in \Lambda} \mathsf{URE}(\boldsymbol{\lambda}).$$

ESTIMATION: EXAMPLE - REGRESSION WITH ID PROBLEM

$$y_{i} = \beta_{i}x_{n} + u_{i}, \quad u_{i} \sim \mathcal{N}(0, \sigma^{2}), \quad i = 1, \dots, n, \quad x_{n} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

$$\begin{array}{c|c} \text{Loss } (\lambda) & \text{Unbiased Risk Estimate } (\lambda) \\ \frac{1}{n}\sum_{i=1}^{n} \left(\frac{x_{n}y_{i}}{x_{n}^{2}+\lambda} - \beta_{i}\right)^{2} & \frac{1}{(x_{n}^{2}+\lambda^{2})^{2}} \left[\frac{\lambda^{2}}{x_{n}^{2}} \left(\frac{1}{n}\sum_{i=1}^{n}y_{i}^{2} - \sigma^{2}\right) + x_{n}^{2}\sigma^{2}\right] \\ \hline \lambda = 0 & \frac{1}{x_{n}^{2}}\frac{1}{n}\sum_{i=1}^{n}u_{i}^{2} & \frac{1}{n}\sum_{i=1}^{n}\beta_{i}^{2} + \frac{2}{x_{n}}\frac{1}{n}\sum_{i=1}^{n}\beta_{i}u_{i} + \frac{1}{x_{n}^{2}}\frac{1}{n}\sum_{i=1}^{2}(u_{i}^{2} - \sigma^{2}) \end{array}$$

- Loss and URE at $\lambda = 0$ diverge.
- Need to control rate at which identification vanishes $(x_n \rightarrow 0)$, to ensure URE minimization is asymp. equivalent to loss minimization.

IDENTIFICATION: SOME INTUITION

Model:

$$y_{it} = \alpha_i + \beta_{j(i,t)} + u_{it}.$$

• Identification of β_j relies on students moving from teacher to teacher. Suppose student *i* is taught by teacher j = t in period *t*:

$$y_{it} = \alpha_i + \beta_t + u_{it}, \quad t = 1, \dots, T$$

$$\implies$$
 we learn that $y_{it} - \frac{1}{T} \Sigma_{j=1}^T y_{it} = \beta_t - \frac{1}{T} \Sigma_{j=1}^T \beta_t +$ noise.

• We will assume that class size stays bounded which means that the c β_j s cannot be consistently estimated. Under $r = \kappa c$ in the best case:

$$\frac{\# \text{ of equations}}{\# \text{ of parameters}} = \frac{rT}{r+c-1} = \frac{\kappa T}{(\kappa+1)-1/c} \not\to \infty \quad \text{as} \quad c \to \infty.$$

IDENTIFICATION: GRAPH-THEORETIC INTERPRETATION

- Bipartite Graph for $\boldsymbol{\theta}$
- students (\mathcal{S}) and teachers (\mathcal{T}) on two sides
- identification of θ requires a connected graph
- connected graph: $\lambda_1(B'B) = 0$ and $\lambda_2(B'B) > 0$. i.e., the smallest eigenvalue is 0 and the second smallest eigenvalue is positive.

$$- \hat{\boldsymbol{\theta}}^{ls} = (B'B)^{-}B'\boldsymbol{Y}$$

• Jochmans and Weidner (2019): $\lambda_2(B'B)$ measures global connectivity and determines properties of the OLS estimator, together with local measures.

Identification of β_1, \ldots, β_c : A Projected Graph

• FWL Theorem: OLS of β in $Y = B_1 \alpha + B_2 \beta + U$ is equivalent to OLS in:

$$\tilde{\mathbf{Y}} = [I - B_1 (B_1' B_1)^{-1} B_1'] \mathbf{Y} = [I - B_1 (B_1' B_1)^{-1} B_1'] B_2 \beta + \tilde{\mathbf{U}}.$$

Define

$$B_{2,\perp} := [I - B_1 (B_1' B_1)^{-1} B_1'] B_2.$$

• Roughly:

$$\hat{\boldsymbol{\beta}}_{OLS} = \left(B_{2,\perp}'B_{2,\perp}\right)^{\dagger}B_{2,\perp}'\tilde{\boldsymbol{Y}}, \quad \mathsf{eigv}_{(1)}(B_{2,\perp}'B_{2,\perp}) = 0.$$

- B'_{2,⊥}B_{2,⊥} is adjacency matrix for projected graph that connects teachers through common students.
- Limited mobility: $\operatorname{eigv}_{(2)}(B'_{2,\perp}B_{2,\perp})$ is close to zero \Longrightarrow weak identification.

Identification of β_1, \ldots, β_c : Example

- Example: c = 3 teachers; class size κ ; T time periods.
- $\nu \leq \kappa$ movers between periods T-1 and T; students move as follows:

$$j = 1 \mapsto j = 2, \quad j = 2 \mapsto j = 3, \quad j = 3 \mapsto j = 1.$$

- It can be shown that eigenvalues of $B_{2,\perp}'B_{2,\perp}$ are

$${\rm eigv}_{(1)}=0, \quad {\rm eigv}_{(2)}=3\nu(1-1/T), \quad {\rm eigv}_{(3)}=3\nu(1-1/T).$$

- If there are no movers (u = 0) eigv $_{(2)} = 0$ (no identification).
- The more movers ν , the larger eigv₍₂₎.
- In the subsequent theory, we will impose conditions on ${\rm eigv}_{(2)}(B'_{2,\perp}B_{2,\perp})$ to control strength of identification.

MAIN THEORETICAL RESULT: OPTIMALITY

Key regularity condition: There exists $j^* < \infty$ and $\delta > 0$ such that for $2 \le j \le j^*$, $\lim_{c \to \infty} c \cdot \operatorname{eigv}_{(j)}(B'_{2,\perp}B_{2,\perp}) \to \infty$ and for $j > j^*$, $\operatorname{eigv}_{(j)}(B'_{2,\perp}B_{2,\perp}) > \delta$.

THEOREM (ASYMPTOTIC OPTIMALITY OF URE SHRINKAGE) Suppose (A1)-(A4) hold. Then for any $\epsilon > 0$,

$$\lim_{r,c\to\infty} \mathbb{P}_{B,\boldsymbol{\theta}}\left\{L(\hat{\boldsymbol{\beta}}^{URE},\boldsymbol{\beta}) \geq L(\hat{\boldsymbol{\beta}}^{OL}(\boldsymbol{\beta}),\boldsymbol{\beta}) + \epsilon\right\} = 0.$$

Implications: $\hat{\boldsymbol{eta}}^{URE}$

- ... achieves (in probability) the same loss as $\hat{\boldsymbol{\beta}}^{OL}$;
- ... is asymptotically optimal among all feasible estimators within the class, e.g., EB-MLE, EB-MoM, OLS.

SIMULATION: SORTING AND CONNECTIVITY

- Period t = 0: Draw (iid): $\alpha_i \sim \mathcal{N}(0, \sigma_a^2)$ and $\beta_j \sim N(0, \sigma_b^2)$.
- Period t = 1:

(a) Allocate teachers and students to schools:

- Sort teachers based on b_j draws. School 1 gets the worst teachers, ...
- Re-assign a fraction of ρ teachers randomly across schools.
- Sort students based on a_i draws. School 1 gets the worst students, ...
- Re-assign a fraction of ρ students randomly across schools.
- (b) Match students to teachers:
 - Sort students within school based on a_i . Teacher 1 gets the worst students, ...
 - Re-assign a fraction of ρ students randomly across teachers.
- Period t = 2: a fraction ψ of randomly assigned teachers switches schools. Repeat student-to-teacher assignment (b).
- Generate outcomes $y_{it} = \alpha_i + \beta_{j(i,t)} + u_{it}$ conditional on graph \mathcal{G} .

ho controls student-teacher sorting; ψ controls connectivity of graph.

SIMULATION: DATA GENERATION & ESTIMATORS

• Data generation:

- Parameters: 2000 students, 200 teachers across 20 schools. $\sigma_a^2 = 1$, $\sigma_b^2 = 1$.
- Design 1 (uncorrelated effects): ho=1, $\psi=0.2$.
- Design 2 (correlated effects): $\rho = 0.5$, $\psi = 0.2$.
- $N_{sim} = 500$ Monte Carlo repetitions.

• Estimators:

- OL λ selected using true loss (oracle);
- URE λ selected based on URE;
- $\mathrm{MLE}\ \lambda$ selected based on marginal likelihood;
- 1WAY one-way effects estimator;
 - ${f LS}$ least squares.

• Evaluation:

$$RMSE(\hat{\beta}) = \sqrt{\frac{1}{N_{sim}} \sum_{s=1}^{N_{sim}} \frac{1}{c} \sum_{j=1}^{c} (\hat{\beta}_{j}^{(s)} - \beta_{j})^{2}}$$

Simulation: URE λ Selection is Robust to Sorting

Design 2: Positive Sorting

Simulation: URE-Based $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$ Estimates Capture Sorting

Notes: x-axis is μ_i and y-axis is α_i . Black lines are 45-degree lines and red lines are least squares regression lines. $\mu_i = 0.5(\beta_{j(i,1)} + \beta_{j(i,2)})$.

Simulation: Sorting Prior Improves MLE in Design 2

Simulation: $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$ Improve With Sorting Prior in Design 2

Notes: x-axis is μ_i and y-axis is α_i . Black lines are 45-degree lines and red lines are least squares regression lines. $\mu_i = 0.5(\beta_{j(i,1)} + \beta_{j(i,2)})$.

Empirical Application: In Progress

Matched student-teacher dataset from North Carolina Education Research Data Center (NCERDC)

- Sample: students from grades 3 to 5 for from 2018-2019.
- Outcome: math test score, standardized to have mean 0 and std 1 within (year,grade). Raw scores: mean 500, std 50.
- Student demographics: economically disadvantaged, english learner, sex, ethnicity.
- Class/teacher characteristics: not used.
- Connectivity: restrict to largest connected component of student-teacher graph:
 - 171,488 observations: r = 132,037 students, c = 5,169 teachers, and s = 256 schools.
 - 0.1 percentile of eig($B_{2,\perp}'B_{2,\perp})$: 0.03 across all schools, 0.102 within schools.
 - \implies limited mobility across schools.

EMPIRICAL APPLICATION: MODEL Quasi likelihood function:

$$y_{it} = 0.105 \cdot y_{it-1} + \alpha_i + \beta_{j(i,t)} + u_{it}, \quad u_{it} \sim \mathcal{N}(0, 0.121)$$

Prior Distribution:

$$\begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix} \left| (B, \boldsymbol{\lambda}) \sim \mathcal{N} \left(\begin{bmatrix} X \boldsymbol{\gamma} \\ \mathbf{0}_c \end{bmatrix}, \ 0.121 \cdot \left[\Lambda^{1/2} \left(-\phi \mathcal{A} + I \right) \Lambda^{1/2} \right]^{-1} \right)$$

$$\Lambda = \begin{bmatrix} \lambda_{\alpha} \cdot I_r & 0 \\ 0 & \lambda_{\beta} \cdot I_r \end{bmatrix}, \quad D = \operatorname{diag}(B'B), \quad \mathcal{A} = D^{-1/2}(B'B)D^{-1/2} - I.$$

EMPIRICAL APPLICATION: HYPERPARAMETER ESTIMATES

- Shrinkage: $\hat{\lambda}_{\alpha} = 0.04$, $\hat{\lambda}_{\beta} = 1.1$.
- A prior sorting: $\hat{\phi} = 0.3$.
- Centering of student effects: $\hat{\gamma}$:

constant	-0.29
economically disadvantaged	-0.62
English learner	-1.85
female	0.07
asian	3.00
black	0.26
hispanic	1.12
white	0.67

Empirical Application: Positive Sorting

• $\hat{\alpha}_{i}^{ure}$: average of $\hat{\alpha}_{i}$ taught by teacher j.

EMPIRICAL APPLICATION: TWO-WAY VERSUS ONE-WAY EFFECTS

Teacher Value added Quintiles

One-way	Two-way Effects				
Effects	1st	2nd	3rd	4th	5th
1st	656	247	100	23	7
2nd	253	391	255	106	29
3rd	84	249	350	269	82
4th	31	111	242	386	264
5th	9	36	87	250	652

CONCLUDING REMARKS

- Two-way effects estimation with matched data.
- Scarce information manifests itself in weak connectivity of the student-teacher graph.
- A novel prior distribution that can capture sorting among students and teachers.
- Asymptotic optimality of URE-based hyperparameter selection for two-way shrinkage estimator.
- Application: teacher value-added estimation.
- Evidence for positive sorting at class and school level in NCERDC data set.