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Introduction

• Matched Data / Interaction-Based Model

– student and teacher;

– employee and employer;

– patient and care provider

• Agent Specific Parameters for Unobserved Heterogeneity

– modeled by two-way effects, outcome depends on pair, i.e., αi + βj ;

– allow for assortative matching;

– condition on the matching network.

• Running Example: estimation of teacher-value added.
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Introduction: Scarce Information is a Challenge

• Limited Observations Per Agent

– Teachers: limited class size;

– Students: observations for only a few years

• Limited Mobility Across Agents

– Identification of teacher value-added is based on
students moving from one teacher to another.

– Limited mobility can be represented as weak connectivity in a bipartite graph
connecting teachers and students.
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Contribution: A New Estimator Robust to Weak
Connectivity

• Empirical Bayes (shrinkage) estimator for two-way effects.

• Adaptive to level of mobility/connectivity through hyperparameter estimation
based on unbiased risk criterion.

• We establish asymptotic optimality within a class of estimator.

• Monte Carlo study and empirical application: estimation of teacher value-added
based on a matched student-teacher data set.
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Literature I

• OLS Estimator for Two-Way Effects is Widely Applied

– employer-employee: Abowd, Kramarz, and Margolis (1999); Card, Heining, and Klein
(2013); etc.

– student-teacher, school-teacher: Clotfelter, Ladd, and Vigdor (2007); Jackson,
Rockoff, and Staiger (2014); Mansfield (2015); etc.

– demand and supply of health care: Finkelstein, Gentzkow, and Williams (2016).

• Issues with OLS Estimator for Two-Way Effects

– Jochmans and Weidner (2019): finite-sample variance and large-sample consistency
depend on connectivity measures of the network.

– Verdier (2020) studies homogeneous regression coefficient estimation.
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Literature II

• Shrinkage Estimation and Empirical Bayes Methods

– James and Stein (1961); Lindley (1962); Stein (1962); Efron and Morris (1972,
1973); Stein (1981); etc.

– Xie, Kou, and Brown (2012, 2016); Brown, Mukherjee, and Weinstein (2018); Kwon
(2021); etc.

– Robbins (1951, 1956); Brown and Greenshtein (2009); Koenker and Mizera (2014);
Gu and Koenker (2017a,b); Liu, Moon, and Schorfheide (2020); etc.

• Existing Shrinkage Estimation for Teacher Value Added

– one-way effect: Kane, Rockoff, and Staiger (2006); Kane and Staiger (2008);
Chetty, Friedman, and Rockoff (2014); Gilraine, Gu, and McMillan (2020); Kwon
(2021); etc.
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Econometric Model

• Model, e.g., for test score:

yit = αi + βj(i,t) + x′itγ + uit,

– student i ∈ S = {1, . . . , r}, r is “rows”;
– teacher j(i, t) ∈ T = {1, . . . , c} of student i in time t, c is “columns”;
– uit | j(·), α1:r, β1:c ∼iid (0, σ2);
– for presentation, we assume there are no covariates xit.

• In this talk: estimate β = (β1, · · · , βc)′, e.g., teacher value added.

• Normalization: 1′cβ = 0.
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Econometric Model

Vector Notation

Y = B1α+B2β +U , U | (B,θ) ∼ (0, σ2I)

= Bθ +U ,

• Y = (y11, · · · , y1T1 , · · · , yr1, · · · , yrTr)′ ∈ RN×1

• B1 ∈ RN×r is matrix of indicators for student i = 1, ..., r

• B2 ∈ RN×c is matrix of indicators for the teachers j = 1, ..., c matched to each
student in each time period

• B = [B1, B2]: all the analysis is conditional on B

• θ = (α′,β′)′
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Econometric Model

• Simplifications (for expositional purposes in the theory part of the talk):

– Each period t, a student i is taught by a single teacher j.

– In the examples: class size is constant κ = r/c across teachers and time.

• Asymptotics:

– T is fixed
– r, c −→∞.
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Next Steps in the Talk

1. Prior distribution with hyperparameter and posterior mean estimator

2. Hyperparameter selection based on minimization of unbiased risk estimate

3. Identification and optimality

4. (...)
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Estimation: Overview

• Hierarchical Model and Empirical Bayes Method

– Derive posterior mean estimates of α and β using an hierarchical prior

p(α,β|B,λ).

– Hyperparameter λ selection by minimization of an unbiased risk estimate (URE).

• Asymptotic Optimality

– Frequentist risk (instead of integrated risk).

– λ selection with URE minimization is robust to misspecification of prior distribution.
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Estimation: Factorization of Prior

• Bayesian inference combines

p(B,α,β|λ)︸ ︷︷ ︸
prior

and p(Y |B,α,β)︸ ︷︷ ︸
likelihood

.

• From an economic perspective, the following factorization of the prior is natural
and allows for sorting in the link formation:

p(B,α,β|λ) = p(α,β|λ)p(B|α,β,λ).

• Because B is observed, posterior inference only requires

p(α,β|B,λ),

which we will use as our starting point.
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Estimation: Prior

• Hyperparameter λ = (µ, λα, λβ, φ).

• Define

Λ =

[
λα · Ir 0

0 λβ · Ir

]
, D = diag(B′B), A = D−1/2(B′B)D−1/2 − I.

• Prior Distribution:

[
α
β

] ∣∣∣∣(B,λ) ∼ N
([

1rµ
0c

]
, σ2

[
Λ1/2 (−φA+ Ir+c) Λ1/2

]−1
)
.

• No sorting for φ = 0.
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Estimation: Posterior Mean

• Shrinking the OLS estimator to common mean vector:

θ̂ = RS1(λ)θ̂
LS

+R
(
I − S1(λ)

)
v.
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Estimation: Benchmark – Infeasible Oracle Shrinkage

• Consider Estimation of β ∈ Rc×1, e.g., teacher value added

• Quadratic Loss:

L(β̂(λ),β) :=
1

c

c∑
j=1

(
β̂j(λ)− βj

)2
.

• Benchmark for Optimality (assumes known β):

β̂
OL

(β) := β̂
(
λOL(β)

)
, λOL(β) := argmin

λ∈Λ
L(β̂(λ),β).
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Estimation: Feasible URE Shrinkage

• Frequentist Risk:
R(λ) = EB,θ[L(β̂(λ),β)].

• We derive an unbiased risk estimate (function of the data) such that:

EB,θ[URE(λ)] = R(λ).

• Proposed Shrinkage Estimator:

β̂
URE

:= β̂(λURE), λURE := argmin
λ∈Λ

URE(λ).
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Estimation: Example – Regression with ID Problem

yi = βixn + ui, ui ∼ N (0, σ2), i = 1, . . . , n, xn −→ 0 as n −→∞.

Loss (λ) Unbiased Risk Estimate (λ)

1
n

∑n
i=1

(
xnyi
x2n+λ

− βi
)2

1
(x2n+λ2)2

[
λ2

x2n

(
1
n

∑n
i=1 y

2
i − σ2

)
+ x2

nσ
2
]

λ = 0 1
x2n

1
n

∑n
i=1 u

2
i

1
x2n
σ2

λ =∞ 1
n

∑n
i=1 β

2
i

1
n

∑n
i=1 β

2
i + 2

xn
1
n

∑n
i=1 βiui + 1

x2n

1
n

∑2
i=1(u2

i − σ2)

• Loss and URE at λ = 0 diverge.

• Need to control rate at which identification vanishes (xn −→ 0), to ensure
URE minimization is asymp. equivalent to loss minimization.
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Identification: Some Intuition

Model:
yit = αi + βj(i,t) + uit.

• Identification of βj relies on students moving from teacher to teacher. Suppose
student i is taught by teacher j = t in period t:

yit = αi + βt + uit, t = 1, . . . , T

=⇒ we learn that yit − 1
T ΣT

j=1yit = βt − 1
T ΣT

j=1βt + noise.

• We will assume that class size stays bounded which means that the c βjs cannot
be consistently estimated. Under r = κc in the best case:

# of equations

# of parameters
=

rT

r + c− 1
=

κT

(κ+ 1)− 1/c
6→ ∞ as c→∞.
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Identification: Graph-theoretic Interpretation

• Bipartite Graph for θ

– students (S) and teachers (T ) on two sides

– identification of θ requires a connected graph

– connected graph: λ1(B′B) = 0 and
λ2(B′B) > 0. i.e., the smallest eigenvalue is 0
and the second smallest eigenvalue is positive.

– θ̂
ls

= (B′B)−B′Y

• Jochmans and Weidner (2019): λ2(B′B) measures global connectivity and
determines properties of the OLS estimator, together with local measures.
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Identification of β1, . . . , βc: A Projected Graph

• FWL Theorem: OLS of β in Y = B1α+B2β +U is equivalent to OLS in:

Ỹ = [I −B1(B′1B1)−1B′1]Y = [I −B1(B′1B1)−1B′1]B2β + Ũ .

• Define
B2,⊥ := [I −B1(B′1B1)−1B′1]B2.

• Roughly:

β̂OLS =
(
B′2,⊥B2,⊥

)†
B′2,⊥Ỹ , eigv(1)(B

′
2,⊥B2,⊥) = 0.

• B′2,⊥B2,⊥ is adjacency matrix for projected graph that connects teachers through
common students.

• Limited mobility: eigv(2)(B
′
2,⊥B2,⊥) is close to zero =⇒ weak identification.
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Identification of β1, . . . , βc: Example

• Example: c = 3 teachers; class size κ; T time periods.

• ν ≤ κ movers between periods T − 1 and T ; students move as follows:

j = 1 7→ j = 2, j = 2 7→ j = 3, j = 3 7→ j = 1.

• It can be shown that eigenvalues of B′2,⊥B2,⊥ are

eigv(1) = 0, eigv(2) = 3ν(1− 1/T ), eigv(3) = 3ν(1− 1/T ).

– If there are no movers (ν = 0) eigv(2) = 0 (no identification).
– The more movers ν, the larger eigv(2).

• In the subsequent theory, we will impose conditions on eigv(2)(B
′
2,⊥B2,⊥) to

control strength of identification.
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Main Theoretical Result: Optimality
Key regularity condition: There exists j∗ <∞ and δ > 0 such that for 2 ≤ j ≤ j∗,
limc→∞ c · eigv(j)(B

′
2,⊥B2,⊥)→∞ and for j > j∗, eigv(j)(B

′
2,⊥B2,⊥) > δ.

Theorem (Asymptotic Optimality of URE Shrinkage)

Suppose (A1)–(A4) hold. Then for any ε > 0,

lim
r,c→∞

PB,θ
{
L(β̂

URE
,β) ≥ L(β̂

OL
(β),β) + ε

}
= 0.

Implications: β̂
URE

• ... achieves (in probability) the same loss as β̂
OL

;

• ... is asymptotically optimal among all feasible estimators within the class, e.g.,
EB-MLE, EB-MoM, OLS.
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Simulation: Sorting and Connectivity

• Period t = 0: Draw (iid): αi ∼ N (0, σ2
a) and βj ∼ N(0, σ2

b ).

• Period t = 1:
(a) Allocate teachers and students to schools:

– Sort teachers based on bj draws. School 1 gets the worst teachers, ...
– Re-assign a fraction of ρ teachers randomly across schools.
– Sort students based on ai draws. School 1 gets the worst students, ...
– Re-assign a fraction of ρ students randomly across schools.

(b) Match students to teachers:

– Sort students within school based on ai. Teacher 1 gets the worst students, ...
– Re-assign a fraction of ρ students randomly across teachers.

• Period t = 2: a fraction ψ of randomly assigned teachers switches schools.
Repeat student-to-teacher assignment (b).

• Generate outcomes yit = αi + βj(i,t) + uit conditional on graph G.

ρ controls student-teacher sorting; ψ controls connectivity of graph.
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Simulation: Data Generation & Estimators

• Data generation:
– Parameters: 2000 students, 200 teachers across 20 schools. σ2

a = 1, σ2
b = 1.

– Design 1 (uncorrelated effects): ρ = 1, ψ = 0.2.
– Design 2 (correlated effects): ρ = 0.5, ψ = 0.2.
– Nsim = 500 Monte Carlo repetitions.

• Estimators:
OL λ selected using true loss (oracle);

URE λ selected based on URE;
MLE λ selected based on marginal likelihood;
1way one-way effects estimator;

LS least squares.

• Evaluation:

RMSE(β̂) =

√√√√ 1

Nsim

Nsim∑
s=1

1

c

c∑
j=1

(β̂
(s)
j − βj)2
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Simulation: URE λ Selection is Robust to Sorting

Design 1: No Sorting Design 2: Positive Sorting
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Simulation: URE-Based (α̂, β̂) Estimates Capture Sorting

True Values (µi, αi) EB-URE (µ̂i, α̂i) EB-MLE (µ̂i, α̂i)
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Notes: x-axis is µi and y-axis is αi. Black lines are 45-degree lines and red lines are least squares

regression lines. µi = 0.5(βj(i,1) + βj(i,2)).
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Simulation: Sorting Prior Improves MLE in Design 2

Sorting Prior No-Sorting Prior

OL URE MLE 1-way LS
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Simulation: (α̂, β̂) Improve With Sorting Prior in Design 2

Sorting Prior No-Sorting Prior

True Values (µi, αi) EB-URE (µ̂i, α̂i) EB-URE (µ̂i, α̂i)
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Notes: x-axis is µi and y-axis is αi. Black lines are 45-degree lines and red lines are least squares

regression lines. µi = 0.5(βj(i,1) + βj(i,2)).
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Empirical Application: In Progress

Matched student-teacher dataset from North Carolina Education Research Data Center
(NCERDC)

• Sample: students from grades 3 to 5 for from 2018-2019.

• Outcome: math test score, standardized to have mean 0 and std 1 within
(year,grade). Raw scores: mean 500, std 50.

• Student demographics: economically disadvantaged, english learner, sex, ethnicity.

• Class/teacher characteristics: not used.

• Connectivity: restrict to largest connected component of student-teacher graph:

– 171,488 observations: r = 132, 037 students, c = 5, 169 teachers, and s = 256
schools.

– 0.1 percentile of eig(B′2,⊥B2,⊥): 0.03 across all schools, 0.102 within schools.

=⇒ limited mobility across schools.
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Empirical Application: Model
Quasi likelihood function:

yit = 0.105 · yit−1 + αi + βj(i,t) + uit, uit ∼ N (0, 0.121)

Prior Distribution:

[
α
β

] ∣∣∣∣(B,λ) ∼ N
([
Xγ
0c

]
, 0.121 ·

[
Λ1/2 (−φA+ I) Λ1/2

]−1
)

Λ =

[
λα · Ir 0

0 λβ · Ir

]
, D = diag(B′B), A = D−1/2(B′B)D−1/2 − I.
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Empirical Application: Hyperparameter Estimates

• Shrinkage: λ̂α = 0.04, λ̂β = 1.1.

• A prior sorting: φ̂ = 0.3.

• Centering of student effects: γ̂:

constant -0.29
economically disadvantaged -0.62
English learner -1.85
female 0.07
asian 3.00
black 0.26
hispanic 1.12
white 0.67
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Empirical Application: Positive Sorting

Teacher Level School Level

• α̂urej : average of α̂i taught by teacher j.
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Empirical Application: Two-way Versus One-way Effects
Teacher Value-Added Estimates

Teacher Value added Quintiles

One-way Two-way Effects
Effects 1st 2nd 3rd 4th 5th

1st 656 247 100 23 7
2nd 253 391 255 106 29
3rd 84 249 350 269 82
4th 31 111 242 386 264
5th 9 36 87 250 652
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Concluding Remarks

• Two-way effects estimation with matched data.

• Scarce information manifests itself in weak connectivity of the student-teacher
graph.

• A novel prior distribution that can capture sorting among students and teachers.

• Asymptotic optimality of URE-based hyperparameter selection for two-way
shrinkage estimator.

• Application: teacher value-added estimation.

• Evidence for positive sorting at class and school level in NCERDC data set.
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