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Abstract

In asset pricing models with stochastic volatility, uncertainty about volatility a�ects

risk premia through two channels: aversion to decreasing returns and aversion to increasing

volatility. We analyze the identi�cation of and robust inference for structural parameters

measuring investors' aversions to these risks: the return risk price and the volatility risk price.

We show that the leverage e�ect (instantaneous causality between the asset return and its

volatility) implies that the variance risk premium does not identify the volatility risk price,

but that price data can identify the volatility risk price without additional options data. We

analyze this identi�cation challenge in a nonparametric discrete-time exponentially a�ne

model, complementing the continuous-time approach of Bandi and Renò (2016). We then

specialize to a parametric model and derive the implied minimum distance criterion relating

the risk prices to the asset return and volatility's joint distribution. This criterion is almost

�at when the leverage e�ect is small, and we introduce identi�cation-robust con�dence sets

for both risk prices regardless of the magnitude of the leverage e�ect.
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1 Introduction

Risk aversion functions extracted from observed stock and option prices can be negative as

shown by Ait-Sahalia and Lo (2000) and Jackwerth (2015). While this phenomenon was

initially viewed as a puzzle, Chabi-Yo, Garcia, and Renault (2008) rationalize it by a lack

of conditioning on state variables. They further argue that the presence of state variables

may explain the so-called pricing kernel puzzle, i.e., the pricing kernel, when projected onto

prices, often exhibits a U-shape pattern rather than the expected decreasing shape. This

so-called �nonmonotonic pricing kernel� is now the focus of a large strand of literature.

Chabi-Yo, Garcia, and Renault (2008) show that conditioning on state variables

encompasses many explanations put forward in the extant literature.1 In particular,

Christo�ersen, Heston, and Jacobs (2013) promote a �variance-dependent pricing kernel�

to reconcile the time-series properties of stock returns with the cross-section of option

prices. This approach amounts to using the conditional variance of the return as a speci�c

state variable in a discrete time context. Bandi and Renò (2016) develop a continuous

time version of this model where the volatility factor is an increasing function of the spot

volatility process in the context of a jump di�usion model of return and volatility. These

models all have a Stochastic Discount Factor (SDF) depending on two risk factors � future

return and future volatility, whose risk compensation are proportional to the risk aversion

coe�cients ζr and ζσ, respectively.

The starting point of this paper is that, to interpret asset prices based on two risk factors,

a key concept is the instantaneous causality between these two factors in the sense of Pierce

and Haugh (1977). When the two factors are the future asset return and its volatility, as in

this paper, the instantaneous causality relationship is usually dubbed the �leverage e�ect� in

the sense of Black (1976). The main theoretical message of this paper is on the impact of the

leverage e�ect on the accuracy of the common belief that identi�cation of risk aversion to

volatility of volatility must be based on observations from the derivative markets. We recall

that the variance risk premium is measured as the di�erence between the risk-neutralized

expected return variation and the realized return variation. Bollerslev, Tauchen, and Zhou

(2009) refer to the work of Britten-Jones and Neuberger (2000) to measure the market's risk

neutral expectation of the total return variation between time t and t+1 conditional on the

time t information from a large portfolio of European calls. They note that this model-free

measure provides a natural empirical analog to the risk-neutral expectation of future return

variation.

This paper stresses that the presence of the leverage e�ect reverses both sides of the

1Examples include heterogeneity of beliefs following regime shifts (Ziegler, 2007), state-dependent
preferences (Melino and Yang, 2003), and external habits with state dependence in beliefs (Veronesi, 2001).
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common belief that identi�cation of risk aversion to volatility of volatility must be based on

observations from the derivative markets. On the negative side, we argue that the variance

risk premium does not unambiguously identify the risk aversion to volatility variation. Due

to the leverage e�ect, the volatility factor on the time interval [t, t+ 1] is conditionally

correlated with the return itself, given the time t information. Therefore, the variance

risk premium combines the e�ect of two risk aversion parameters: ζr > 0 for aversion

to negative variation in the return and ζσ < 0 for aversion to positive variation in the

volatility. On the positive side, we show that, precisely because the volatility factor on

the time interval [t, t+ 1] is correlated with the return itself conditional on the time t

information, observations of the return alone, without any observation from the derivative

markets, are su�cient to identify both risk aversion parameters. The asset pricing equation

in the presence of a leverage e�ect depends on both risk aversion parameters, which allows

econometric identi�cation of these parameters from the joint distribution of the return and

the volatility.

We propose a valid inferential methodology to materialize the positive side of the message

above: learning both risk aversion parameters with observations of the return. This is

challenging for the following reason: On the one hand, although we expect the leverage

e�ect to be negative, it is di�cult to quantify empirically and its estimate usually is small

(Aït-Sahalia, Fan, and Li, 2013). On the other hand, in the absence of a leverage e�ect, risk

aversion to the volatility of volatility is not identi�ed from the time series of the asset only.

Therefore, when the true leverage e�ect is small, the return data alone provide a limited

amount of information about the aversion to the volatility risk, compared to the �nite-sample

noise in the data. This low signal-to-noise ratio, as modeled by (nearly) weak identi�cation,

may invalidate standard inference based on the Generalized Method of Moments (GMM)

estimator, see Stock and Wright (2000), Andrews and Cheng (2012), Antoine and Renault

(2012).

We provide an identi�cation-robust con�dence set for the structural parameters that

measure the return risk price, the volatility risk price, and the leverage e�ect. The robust

con�dence set provides correct asymptotic coverage, uniformly over a large set of models

and allows for any magnitude of the leverage e�ect. This uniform validity is crucial for

the con�dence set to have good �nite-sample coverage (Mikusheva, 2007; Andrews and

Guggenberger, 2010). In contrast, standard con�dence sets based on the GMM estimator

and its asymptotic normality do not have uniform validity in the presence of a small

leverage e�ect. This issue a�ects all the structural parameters because they are estimated

simultaneously.

We construct the robust con�dence set in two steps. First, we establish a minimum
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distance criterion using link functions between the structural parameters and a set of

reduced-form parameters that determine the joint distribution of the return and volatility.

The structural model implies that the link functions are zero when evaluated at the true

values of the structural parameters and the reduced-form parameters. Identi�cation and

estimation of these reduced form parameters are standard and are not a�ected by the

presence of a small leverage e�ect. However, the link functions are almost �at in some

structural parameters when the leverage e�ect is small, resulting in weak identi�cation.

Second, given this minimum distance criterion, we invert the conditional quasi-likelihood

ratio (QLR) test of Andrews and Mikusheva (2016) to construct a robust con�dence set.

The key feature of this test is that it treats the �at link functions as an in�nite-dimensional

nuisance parameter. The critical value is constructed by conditioning on a su�cient statistic

for this nuisance parameter, and it is known to yield a valid test regardless of the nuisance

parameter's value. Andrews and Mikusheva (2016) develop this test in a GMM framework.

We show it works in minimum distance contexts such as the one considered here and provide

conditions for its asymptotic validity. For practitioners, we provide a detailed algorithm for

the construction of this simulation-based robust con�dence set. It is worth noting that that

this strategy of identi�cation-robust inference in a minimum-distance framework may be

applied in other contexts such as Magnusson (2010) and Magnusson and Mavroeidis (2010).

One may question the relevance of this robust inference method given that a natural

solution to the low signal-to-noise issue in returns is to use derivatives data. We follow in this

respect a research agenda �rst put forward by Bandi and Renò (2016). As they compellingly

show, the bene�t of using the stock return data alone and not resorting to option prices

is robustness to misspeci�cation. Bandi and Renò (2016) emphasize that their result �does

not hinge on sudden changes in risk premia associated with market downturns (as possibly

yielded by the use of the VIX ) or implied volatility smirks (as given by cross-sectional

option prices). Said di�erently, the e�ect is solely revealed by the dynamic properties

of stock prices, once volatility is �ltered e�ectively and a su�ciently rich speci�cation is

adopted, without the need for the, arguably economically confounding (due to risk premia),

information contained in traded or synthetic options.�

Our asset pricing framework is germane to Bandi and Renò (2016) with a couple

of di�erences. First, like Bandi and Renò (2016), we resort to a variance-dependent

exponentially a�ne SDF, while discussing identi�cation in a nonparametric setting for

both the historical and the risk-neutral distributions. While Bandi and Renò (2016) remain

nonparametric in the context of a jump di�usion model of return and volatility, we choose

to work in discrete time. An advantage is that our �ltered value of volatility, based on

high frequency data like that in Bandi and Renò (2016), is much less noisy. Our estimate
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is based on the average value of the instantaneous variance over a day, whereas Bandi and

Renò (2016) estimate the spot volatility process. It is also worth noting that, when the

time interval between observations becomes in�nitesimal, one may argue that our discrete

time empirical model converges to a di�usion model(see Han, Khrapov, and Renault, 2020)

germane to Bandi and Renò (2016).

Second, Du�e, Pan, and Singleton (2000) have shown that in the context of an

exponentially a�ne SDF, derivative asset prices can be computed from �extended

transforms�, meaning conditional Laplace transforms of the joint vector of payo�s and

state variables at some horizon, given the information available at time t. We extend

Du�e, Pan, and Singleton (2000) to nonparametric historical and risk-neutral conditional

Laplace transforms of the pair of daily return and �ltered volatility. As such, our general

identi�cation result with the unrestricted Laplace transforms generalizes that in Bandi and

Renò (2016) on a jump di�usion process. Furthermore, we de�ne a general concept of �local

zero-leverage�, more general than zero-leverage, and show that it is su�cient to impair the

identi�cation of the volatility risk aversion.

As in Bandi and Renò (2016), we illustrate our general nonparametric identi�cation

result by estimating a speci�c parametric model. Our empirical model is an extension of

that in Corsi, Fusari, and La Vecchia (2013). The proposed extension is motivated by

the need to properly accommodate the leverage e�ect as well as the need to illustrate our

identi�cation statement. We parameterize the impact of the leverage e�ect in order to

capture the implications of the usual continuous time models in the literature of option

pricing with stochastic volatility. On the one hand, as in the continuous time models,

knowledge of the contemporaneous volatility innovation reduces the conditional variance

of the return innovation since the two innovations are correlated, i.e., the instantaneous

causality e�ect. On the other hand, this also introduces an additional term in the return

drift because knowledge of the future volatility has an impact on the expected return. As

stressed by Bollerslev, Litvinova, and Tauchen (2006), this e�ect of leverage on the expected

return is hard to disentangle in discrete time from the volatility feedback e�ect due to the

risk compensation. Bollerslev, Litvinova, and Tauchen (2006) claim that only continuous

time observations would allow us to clearly disentangle the two e�ects by detecting the

direction of causality. This potential identi�cation issue is carefully taken into account in

the de�nition of our three structural parameters: the two risk aversion parameters, and the

leverage e�ect parameter that is identi�ed in the risk neutral world.

Our empirical model also extends Corsi, Fusari, and La Vecchia (2013) by introducing

additional state variables for identi�cation. By introducing additional state variables in

the conditional mean and variance of the conditionally Gaussian log-return, we obtain
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identi�cation of the two risk aversion parameters by only using observations of the equity

return (jointly with its realized variance), in view of the non-arbitrage condition equilibrium.

In contrast, Corsi, Fusari, and La Vecchia (2013) acknowledge that in their model the

parameter of risk aversion for the volatility of volatility �must be calibrated�.

The rest of the paper is organized as follows. Section 2 discusses theoretical identi�cation

in a model-free framework where the conditional probability distributions of interest, both

in the historical and risk-neutral worlds, are characterized by their conditional Laplace

transforms. In section 3, we specify a general exponentially a�ne pricing model for the joint

historical distribution of the return and the volatility factor. Our bivariate discrete time

model is inspired by the continuous time model of Heston (1993) and belongs to the general

class of Compound AutoRegressive Models (CAR) of Darolles, Gouriéroux, and Jasiak

(2006). Although we assume a CAR structure, we remain in this section nonparametric

about the conditional Laplace transforms that de�ne the conditional distribution of the

volatility factor given the past, and the conditional Laplace transforms that de�ne the

current return given the current volatility factor and the past information. Section 4 studies

the empirical model. We introduce a dynamic model for the volatility factor and specify a

parametric model for the joint conditional distribution of the return and the volatility factor

given the past. We also provide the link function between the reduce form parameters that

characterize the joint conditional distribution of the return and the volatility factor and the

structural parameters that characterize the risk aversions and the leverage e�ect. Section

5 provides an identi�cation-robust inference method for the structural parameters. The

proposed con�dence set is uniformly valid regardless of the magnitude of the leverage e�ect.

In particular, it is robust to a small leverage e�ect. Section 6 and Section 7 provide Monte

Carlo simulation results and an empirical application. Section 8 concludes.

2 General Framework

In this section, we consider general conditional Laplace transforms that describes the joint

distribution of an asset return and a volatility factor. The historical and risk-neutral

distributions are connected by an exponentially a�ne SDF. We show that, as in continuous

time with the Girsanov theorem, the change of measure provided by the exponentially a�ne

SDF is leverage e�ect preserving: there is instantaneous causality between the two variables

in the risk-neutral world if and only if this causality exists in the historical world. We prove

our identi�cation claims in this general setting. We also de�ne a general concept of �local

zero-leverage�, more general than zero-leverage, and show that it is su�cient to impair the

identi�cation of volatility risk aversion.
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2.1 Variance-Dependent Pricing Kernel

We specify a SDF that characterizes the compensation both for the risk on equity (with the

risk price parameter ζr) and for the uncertainty of the volatility factor (with the risk price

parameter ζσ) implied by the stochastic volatility process between dates t and t + 1. The

general study of a�ne option pricing by Pan (2002) (see formula (A1) on page 34 of Pan,

2002, for the state-price density) shows that this SDF must compensate two kinds of risk:

The �rst is the risk on equity as carried by the future random return rt+1. The second is the

risk on volatility as carried by what will be expected at time t+ 1 about future integrated

variance
∫ T

t+1
σ2
udu, T > t+ 1.

For econometric identi�cation of these two kinds of risk, two approaches are sensible.

The �rst approach is to consider a framework where the time to maturity is in�nitely small.

We might then consider extensions of the nonparametric in�nitesimal method of moments

proposed by Bandi and Renò (2016). The alternative approach is to choose some horizon

and work in discrete time, as in the present paper. Our model is essentially robust to

time aggregation, and it can be interpreted through its continuous time limit. The cost

of focusing on a discrete time version is limited. Moreover, the discrete time approach is

better suited to address the weak identi�cation issue we are interested in, without further

complications due to the nonparametric rates of convergence for estimators of the spot

volatility. As acknowledged by Bandi and Renò (2016), �variance measures integrated over

a longer horizon are expected to be relatively less noisy than less integrated ones�. We

consider hereafter (see the next subsection) that the relevant volatility factor µt is produced

by an optimal forecast of the daily integrated variance, which is accurately estimated with

high frequency data.

W consider the following SDF:

Mt+1 (ζ) = exp (−rf,t)M0,t (ζ) exp
{
−ζrrt+1 − ζσµt+1

}
, (2.1)

where rf,t stands for the continuously compounded risk free interest rate between t and

t + 1, rt+1 is the stock log-return in excess of the risk-free rate rf,t, and µt+1 is a volatility

factor de�ned more precisely in the next subsection. Our general model in (2.1) can be

interpreted in both continuous time and discrete time. Christo�ersen, Heston, and Jacobs

(2013) use a Heston and Nandi (2000) GARCH process for a discrete time approximation of

the continuous time model. However, this approximation cannot be exact since the GARCH

model is known to be non-robust to temporal aggregation. In contrast, we employ the a�ne

stochastic volatility (SV) model, which has been shown (see Meddahi and Renault, 2004)

to be the SV version of weak-GARCH that is robust to temporal aggregation.
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Several authors (see e.g., Chernov, Gallant, Ghysels, and Tauchen, 2003; Christo�ersen,

Heston, and Jacobs, 2009) have emphasized the importance of a multifactor variance

speci�cation, meaning that the aforementioned function of volatility in the pricing kernel

would be a sum of various Markov factors potentially correlated with the innovation of the

return process. Since the focus of this paper is the leverage e�ect, i.e., the instantaneous

correlation between the return process and the variance process, the multifactor approach

may be useful to generate stochastic correlation between the return and the volatility, due

to the fact that the factors have di�erent degrees of correlation with the return process

and the weights of the di�erent factors vary over time. As in Bandi and Renò (2016), we

avoid the statistical challenge to estimate a multifactor model by assuming (see section

2.3. below) that what matters for the variance-dependent SDF speci�cation is a volatility

factor computed from high-frequency data.

2.2 Conditional Laplace Transforms

In this section, we use the Laplace transforms to characterize the relationship between the

historical and risk-neutral conditional distributions at time t+h given information available

at time t with the SDF (2.1) that bridges the gap between the two distributions.

Let I(t) stand for the information available at time t, which contains at least the past

and present observations of the joint processWt = (rt, µt) such that {Wτ ,M0,τ (ζ) , τ ≤ t} ⊂
I(t). The historical joint dynamics of the process Wt is de�ned by the conditional Laplace

transform L:
Lt(u, v) = E[exp

(
−urt+1 − vµt+1

)
|I(t)] ,∀u ∈ R, v ∈ R.

Plugging the formula (2.1) for Mt+1 (ζ) into this conditional Laplace transform, we note

that the non-arbitrage condition

exp(−rf,t) = E[Mt+1(ζ) |I(t)]

is tantamount to

M0,t (ζ) =
1

Lt(ζr, ζσ)
.

Therefore, the SDF can be written as

Mt+1 (ζ) =
exp (−rf,t) exp

{
−ζrrt+1 − ζσµt+1

}
Lt(ζr, ζσ)

. (2.2)

The risk neutral joint dynamics of the process Wt is de�ned by the conditional Laplace
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transform L∗:

L∗
t (u, v) = E∗[exp

(
−urt+1 − vµt+1

)
|I(t)] .

The bridge between the two, historical and risk-neutral, conditional distributions is given

by the SDF Mt+1(ζ) through the identity

exp(−rf,t)E∗[exp
(
−urt+1 − vµt+1

)
|I(t)] = E[Mt+1(ζ) exp

(
−urt+1 − vµt+1

)
|I(t)] .

By plugging in the formula (2.2) for the SDF Mt+1 (ζ), we obtain

L∗
t (u, v) =

Lt(u+ ζr, v + ζσ)

Lt(ζr, ζσ)
. (2.3)

Formula (2.3) is the fundamental relationship between the risk-neutral and historical

distributions that allows us to discuss identi�cation of the risk aversion parameters ζr and

ζσ from the historical distribution when assuming that the risk neutral distribution does

not depend on these parameters.

Moreover, as enhanced by Du�e, Pan, and Singleton (2000), the formula in (2.3) can be

interpreted as providing the market price πt at time t of any time t + 1 exponential payo�

exp
(
−urt+1 − vµt+1

)
from the Laplace transform:

πt = E[Mt+1(ζ) exp
(
−urt+1 − vµt+1

)
|I(t)] = Lt(u+ ζr, v + ζσ)

Lt(ζr, ζσ)
.

Note that this statement is more general than that in Du�e, Pan, and Singleton (2000),

because here only the SDF is assumed to be exponentially a�ne without any additional

assumption about the historical and the risk-neutral distributions.

2.3 The Volatility Factor

In this subsection, we focus on the speci�cation of the volatility factor µt+1 in the variance-

dependent SDF (2.2) during the period [t, t+ 1]. The characterization of the state-price

density by Pan (2002) suggests that our volatility factor should be

µt = E[IVt+1 |I(t)] , (2.4)

where IVt+1 is the integrated variance over the period, i.e., IVt+1 =
∫ t+1

t
σ2
udu.

It is worth noting that this model is to a large extent a generalization of both Bandi and

Renò (2016) and Christo�ersen, Heston, and Jacobs (2013). First, suppose σ2
u is a di�usion
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process with a linear drift:

µt = E[IVt+1 |I(t)] =
∫ t+1

t

E[σ2
u |I(t)] du = A+Bσ2

t .

In this case, up to a nonlinear transformation of the process σ2
u and inclusion of volatility

jumps, the continuous time approach of Bandi and Renò (2016) that takes the spot volatility

process σ2
u as the volatility factor is nested in (2.4). Moreover, as mentioned above, we take

advantage of the fact that the daily realized variance computed from high frequency data

provides a much less noisy, consistent estimator of the integrated variance than estimators

of the spot volatility. For our empirical application, we assume that this estimator accuracy

allows us to approximate the forecast µt of IVt+1 by the forecast of the realized variance

RVt+1 computed as sum of consecutive squared returns within �day� [t, t+ 1].

Second, in their discrete time GARCH framework, Christo�ersen, Heston, and Jacobs

(2013) choose the conditional variance of return V ar[rt+1 |I(t)] as a volatility factor. We

encompass their setting by assuming that µt = V ar[rt+1 |I(t)] . The maintained assumption

µt = E[IVt+1 |I(t)] = V ar[rt+1 |I(t)]

has been thoroughly discussed in the literature on �HEAVY models� (High-frEquency-

bAsed VolatilitY models) as developed by Shephard and Sheppard (2010). For the sake

of specifying a feasible model, they focus on the realized variance RVt+1. We maintain the

approximation

µt = E[IVt+1 |I(t)] = E[RVt+1 |I(t)] .

As explained by Shephard and Sheppard (2010), V ar[rt+1 |I(t)] may be interpreted as a

�close-to-close conditional variance�, whereas E[RVt+1 |I(t)] is the �conditional expectation
of the open-to-close variation�. Brownlees and Gallo (2010) have empirically checked

more generally whether the two measures are related by an exact a�ne relationship.

Not only this restriction is not rejected, but they do not �nd compelling empirical

evidence against the identity V ar[rt+1 |I(t)] = E[RVt+1 |I(t)] . It is worth stressing that

these maintained assumptions are about the historical distribution and are unrelated

to the speci�cation of the risk-neutral distribution discussed below. In particular, we

see the process µt = E[RVt+1 |I(t)] as a well-de�ned statistical object unrelated to the

risk-neutralization distribution for the purpose of asset pricing.
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2.4 Leverage E�ect Preserving Change of Measure

In continuous time models, the leverage e�ect is de�ned as the instantaneous correlation

between the asset return and its volatility process. By virtue of the Girsanov theorem, the

leverage e�ect is unchanged when moving from the historical measure to the risk neutral

measure. Interestingly, the fact that the pricing kernel is exponentially a�ne is su�cient

(and necessary to a large extent) for a similar property in discrete time, regarding the

absence of a leverage e�ect.

Proposition 1. Given I(t), rt+1 and µt+1 are conditionally independent for the historical

distribution if and only if they are conditionally independent for the risk neutral distribution.

When the conditional independence condition is violated, we say that there exists a

leverage e�ect. The proof of Proposition 1 is a straightforward implication of (2.3) since

independence is characterized by the factorization of the Laplace transform function.

Combining independence and (2.3), we have

Lr,t(u+ ζr)Lσ,t(v + ζσ) = L∗
r,t(u)L∗

σ,t(v)Lr,t(ζr)Lσ,t(ζσ), ∀u, v ∈ R,

where Lr,t(.) (resp. Lσ,t(.)) stands for the historical conditional Laplace transform of rt+1

(resp. µt+1) given I(t), and L∗
r,t(u) and L∗

σ,t(v) are their risk-neutral counterparts. In

particular, by considering the above formula for u = 0 or v = 0, we obtain

Lσ,t(u+ ζσ) = L∗
σ,t(u)Lσ,t(ζσ),∀u ∈ R,

Lr,t(v + ζr) = L∗
r,t(v)Lr,t(ζr),∀v ∈ R.

Since the risk-neutral distribution does not depend on the preference parameters ζr and

ζσ, we have the following conclusion in Proposition 2 below.

Proposition 2. When there is no leverage e�ect,

(i) the historical conditional distribution of rt+1 given I(t) depends on the pricing kernel

only through the parameter ζr;

(ii) the historical conditional distribution of µt+1 given I(t) depends on the pricing kernel

only through the parameter ζσ.

Proposition 2 explains why it is a common belief that one can identify ζσ, price of the

volatility risk, by comparing the risk neutral and the historical distribution of the volatility

factor. A common practice is to draw this comparison through the variance premium.
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However, in contrast to the common belief, observations of the risk neutral expectation of

the future variance, through the VIX, does not allow retrieving the price ζσ of the volatility

risk in the presence of a leverage e�ect. To see this, note that, from (2.3), we can characterize

the two risk neutral distributions by

L∗
r,t(u) =

Lt(u+ ζr, ζσ)

Lt(ζr, ζσ)
,

L∗
σ,t(v) =

Lt(ζr, v + ζσ)

Lt(ζr, ζσ)
,

and the risk neutral expectation of the volatility factor is given by

E∗[µt+1 |I(t)] =
∂L∗

σ,t(0)

∂v
=

1

Lt(ζr, ζσ)

∂Lt(ζr, ζσ)

∂v
. (2.5)

In the presence of a leverage e�ect, (Lt(ζσ, ζr) ̸= Lσ,t(ζσ)Lr,t(ζ2)), Lr,t(ζr) cannot be

factorized out for the purpose of simpli�cation between the numerator and the denominator

in (2.5). Thus, the risk neutral expectation of the future variance should depend (for a given

historical Laplace transform) on both ζσ and ζr and it is not clear how the two parameters

could be disentangled. This lack of identi�cation con�rms what Pan (2002) proves with

her computation of the state-price density, see formula (A2) on page 34 of Pan (2002).

The state-price density formula shows that the market price of the volatility Brownian

shock depends not only on ζσ but also on ρζr , where ρ is the instantaneous correlation

between the two Brownian shocks corresponding to the return and the volatility. The same

observation is made in discrete time by Christo�ersen, Heston, and Jacobs (2013), whose

formula (4) shows that the risk premium on the volatility risk depends on ζr in the presence

of a leverage e�ect.

2.5 Leverage-E�ect-Based Identi�cation of Risk Prices

In contrast to another common belief, observations of the price of the asset may actually

provide identi�cation of ζσ, price of the volatility risk. By de�nition, the absence of arbitrage

implies that the risk neutral expectation of the excess return exp (rt+1) equals to unity, i.e.,

L∗
r,t(−1) = E∗[exp (rt+1) |I(t)] = 1. (2.6)
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Combining this equality with the Laplace transform in (2.3) with u = −1 and v = 0, the

pricing equation of the underlying asset satis�es

Lt(ζr, ζσ) = Lt(ζr − 1, ζσ). (2.7)

In the presence of a leverage e�ect, i.e., Lt(ζσ, ζr) ̸= Lr,t(ζr)Lσ,t(ζσ), Lσ,t(ζσ) cannot be

factorized out for simpli�cation of (2.7). Thus, (2.7) provides identi�cation information for

both ζr and ζσ for a given historical Laplace transform. We set the focus of this paper

on a model where the bivariate process Wt = (rt, µt) is Markov of order one. In this case,

identi�cation of the coe�cients of the two state variables in equation (2.7) provides in general

two independent equations that allow for identi�cation of both risk price parameters ζr and

ζσ.

This result can be seen as a generalization of the result �rst put forward by Bandi and

Renò (2016). They stress that their exponentially a�ne variance-dependent pricing kernel

(see their speci�cation (17) on page 125) outlines some restrictions on the risk aversion

coe�cients (see their Proposition 8.1) ζσ and ζr induced by the absence of arbitrage. Even

though both the historical and risk-neutral distributions are viewed as nonparametric, their

equation (19) shows that the two risk aversion parameters can be identi�ed from asset

prices when there is a leverage e�ect, see coe�cient ψρ(σ)σ in their equation (19). We �nd

a similar result, again with the exponentially a�ne variance-dependent pricing kernel, while

keeping nonparametric speci�cations for the historical and risk-neutral distributions. We

are arguably even more nonparametric since we consider unrestricted Laplace transforms

instead of di�usion processes. Moreover, this nonparametric framework allows us to be more

precise about the possibility of identi�cation of both risk price parameters ζr and ζσ from

observations of the asset return. The following Proposition 3 shows that while the presence

of a leverage e�ect is a necessary condition, it is not fully su�cient. Not only the conditional

distribution of rt+1 given I(t) and µt+1 must depend on µt+1, but also this dependence must

not be hidden by the value of ζr the parameter of risk aversion for equity.

Let L(r|σ),t(u) = E[exp (−urt+1) |Iσ(t)] stands for the conditional Laplace transform of

rt+1 given the information set Iσ(t) = I(t) ∨ {µt+1}.

Proposition 3. Suppose L(r|σ),t(u) can be factorized for all u as

L(r|σ),t(u) = A
(
u, µt+1

)
B (u, I(t))

for some given (independent of risk aversion parameters) deterministic functions A and B
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and the risk aversion parameter ζr satis�es

A
(
ζr, µt+1

)
= A

(
ζr − 1, µt+1

)
. (2.8)

Then,

Lt(ζr, ζ) = Lt(ζr − 1, ζ),∀ζ ≥ 0 ⇐⇒ B (ζr, I(t)) = B (ζr − 1, I(t)) .

Hence, the condition (2.8) implies that the arbitrage condition (2.6) (or equivalently

(2.7)) does not identify the risk aversion parameter ζσ but only possibly ζr. The condition

(2.8) is obviously implied by the absence of a leverage e�ect (see A
(
u, µt+1

)
≡ 1) and is

dubbed hereafter the �local zero-leverage�. We show in Section 3 that the model of Corsi,

Fusari, and La Vecchia (2013) is a case where there is a leverage e�ect but a local zero-

leverage.

To sum up, the presence of a leverage e�ect should reverse both sides of common beliefs.

Not only do observations of variance premium not provide identi�cation of the price of

volatility risk ζσ, but also, on the contrary, observations of the return of the asset of interest

provide in general identi�cation of both risk prices ζr and ζσ. However, we understand that

this identi�cation is fragile. It may in practice be quite weak, either because the leverage

e�ect is small or the risk aversion for equity is close to local zero-leverage.

3 An Exponentially A�ne Pricing Model

While our theoretical result about identi�cation is model-free (up to the maintained

assumption of an exponential a�ne pricing kernel), the link functions for the minimum

distance estimation of the risk prices must be built from moment restrictions about the

joint process of the return and the volatility factor. As already mentioned, it has been

known since Du�e, Pan, and Singleton (2000) that exponentially a�ne models of return

and volatility are very convenient to get closed form formulas of the conditional Laplace

transforms and associated moments. We propose a discrete time version of this approach.

Our bivariate discrete time model belongs to the general class of Compound

AutoRegressive Models (CAR) of Darolles, Gouriéroux, and Jasiak (2006). Although

we assume a CAR structure, we remain in this section nonparametric about the functions

a (·) , b (·) , α (·) , β (·) , γ (·) (see below) that de�ne the CAR model. The stochastic process

(rt, µt) is stationary Markov of order one. The conditional joint distribution of (rt+1, µt+1)

given I(t) is factorized as the product of (i) the conditional distribution of µt+1 given I(t),

and (ii) the conditional distribution of rt+1 given I
σ(t) = I(t) ∨ {µt+1}.
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We �rst de�ne the historical distribution and then deduce the risk-neutral distribution

using the SDF Mt+1 (ζ) .

3.1 Historical Distribution

Following Renault (1997) and Garcia and Renault (1998), we preclude any Granger causality

relationship from the asset return to its volatility. Moreover, as in all popular models,

consecutive asset returns are assumed to be serially independent given the path of the

volatility factor. Hence, we specify the historical distributions as follows. (i) The conditional

distribution of µt+1 given I(t) depends only on the last past value µt. We characterize this

distribution by its exponentially a�ne Laplace transform

Lσ,t(v) = E[exp
(
−vµt+1

)
|I(t)] = exp {−a(v)µt − b(v)} . (3.1)

(ii) The conditional distribution of rt+1 given Iσ(t) = I(t) ∨ {µt+1} depends only on

current and the last past values µt+1 and µt of the volatility factor. Similarly, we have

an exponentially a�ne conditional Laplace transform

L(r|σ),t(u) = E[exp (−urt+1) |Iσ(t)] = exp
{
−α(u)µt+1 − β(u)µt − γ(u)

}
. (3.2)

The bivariate CAR model for (rt+1, µt+1) can be deduced from (3.1) and (3.2) by the Law

of Iterated Expectations:

Lt(u, v) = E[exp{−vµt+1}L(r|σ),t(u) |I(t)] . (3.3)

Note that by de�nition,

a(0) = b(0) = α(0) = β(0) = γ(0) = 0.

Several remarks are in order. First, the model (3.1) assumes that the volatility factor µt

is a Markov process of order one. We note that this Markov property is ful�lled in particular

by the model in Heston (1993) as well as the model in Bandi and Renò (2016) in the case

(with their notations) ξ (σ2
t ) = σ2

t . In these models, µt is an a�ne function of the di�usion

process σ2
t .

Second, the realized variance RVt+1 is the sum of the AR(1) process µt and a forecast

error. The forecast error by de�nition is a martingale di�erence sequence. Therefore, the

process RVt is ARMA(1, 1), rather than the more restrictive AR(1) process sometimes

employed for simpli�cation. While Han, Khrapov, and Renault (2020) estimate an
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unconstrained ARMA(1, 1) model, we resort in this paper (see section 4.1) to a HEAVY

model.

Third, as in Heston (1993), the a�ne structure of the volatility model applies not only

to the conditional expectation (AR(1) structure) but also to the conditional variance:

E[µt+1 |I(t)] = a′(0)µt + b′(0),

V ar[µt+1 |I(t)] = −a′′(0)µt − b′′(0).

Similarly, for the asset return conditional on Iσ(t) = I(t) ∨
{
µt+1

}
,

E[rt+1 |Iσ(t)] = α′(0)µt+1 + β′(0)µt + γ′(0),

V ar[rt+1 |Iσ(t)] = −α′′(0)µt+1 − β′′(0)µt − γ′′(0).

Fourth, the leverage e�ect, de�ned as the instantaneous causality between rt+1 and µt+1,

is present if and only if the function α(·) is not identically zero (or equivalently not constant).
When there is no leverage, we deduce from (3.3) the factorization

Lt(u, v) = Lσ,t(v)L(r|σ),t(u) = Lσ,t(v)Lr,t(u).

3.2 Risk-Neutral Distribution

A desirable feature of the exponentially a�ne SDF is that it delivers risk-neutral

distributions with patterns analogous to those of the historical ones, with adjusted

parameter values incorporating the two risk aversion parameters. We prove in the appendix

that the conditional Laplace transform that governs the risk-neutral distributions can be

written as follows.

Proposition 4. (i) The risk-neutral conditional distribution of µt+1 given I(t) is

characterized by its exponentially a�ne Laplace transform

L∗
σ,t(v) = E∗[exp

(
−vµt+1

)
|I(t)] = exp {−a∗(v)µt − b∗(v)}

with

a∗(v) = a (v + ζσ + α (ζr))− a (ζσ + α (ζr)) ,

b∗(v) = b (v + ζσ + α (ζr))− b (ζσ + α (ζr)) .

(ii) The risk-neutral conditional distribution of rt+1 given Iσ(t) = I(t) ∨ {µt+1} is
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characterized by its exponentially a�ne Laplace transform

L∗
(r|σ),t(u) = E∗[exp (−urt+1) |Iσ(t)] = exp

{
−α∗(u)µt+1 − β∗(u)µt − γ∗(u)

}
with

α∗(u) = α (u+ ζr)− α(ζr),

β∗(u) = β (u+ ζr)− β(ζr),

γ∗(u) = γ (u+ ζr)− γ(ζr).

Note that the function α∗(·) is identically zero if and only if the function α(·) is identically
zero (or equivalently identically constant). As discussed in Proposition 1, there is no leverage

in the risk-neutral world if and only if there is no leverage in the historical world. However,

we argue in the next subsection that the correct measure of the leverage e�ect must be

computed in the risk-neutral world. This is consistent with the common practice to assess

the amount of leverage from the shape of the volatility smirk (see e.g., Renault, 1997).

3.3 Leverage E�ect Characterized by Risk-Neutral Distribution

As explained in the introduction, the leverage e�ect in discrete time is a parameter, denoted

by LEV , that must be de�ned from the risk-neutral distribution, to avoid confusion with

the volatility feedback e�ect due to risk compensation. Following the intuition of Black

(1976), it should measure the negative instantaneous impact of the volatility factor in the

risk-neutral return forecast

E∗[exp (rt+1) |Iσ(t)] = exp
[
−α∗ (−1)µt+1 − β∗ (−1)µt − γ∗ (−1)

]
.

As such, the amount of leverage is

LEV = −α∗ (−1) ≤ 0.

Note that Proposition 4 implies LEV = −α∗ (−1) = α (ζr) − α (ζr − 1) . Therefore, the

leverage e�ect parameter LEV is zero if and only if there is local zero-leverage.

We also note that the historical world analog of the parameter LEV , −α (−1),

underestimates (in absolute value) the true leverage in general, i.e., −α∗ (−1) < −α (−1) .

This holds because −α∗ (−1) = α (ζr − 1)− α (ζr) , viewed as a function of ζr, is expected

to be an increasing function when ζr is positive and near zero, and α(·) is approximately
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a quadratic function. To see this, we approximate the function α (x) by its quadratic

expansion around zero and obtain

α(x− 1)− α (x) ≈ −α′ (0)− α′′(0)

2

[
x2 − (x− 1)2

]
= −α′ (0) +

α′′(0)

2
[1− 2x] .

The right hand side is an increasing function of x because α′′(0) ≤ 0, as seen from the

formula for V ar[rt+1 |Iσ(t)] .
This result is a striking con�rmation of the di�culty to identify the leverage e�ect in

discrete time as documented by Bollerslev, Litvinova, and Tauchen (2006). There is an

attenuation e�ect, due to the risk aversion ζr for the return risk. We actually expect that

in the historical expectation of the asset return, namely in the quantity −α (−1), there is

not only the negative term LEV, but also a positive risk compensation term increasing with

the risk aversion parameter ζr. This positive addition to the negative term LEV , dubbed

the volatility feedback, attenuates its magnitude.

3.4 Identi�cation of Volatility Risk Price

As discussed in Section 2, identi�cation of the risk aversion parameter ζσ from asset returns,

if possible, should come from the arbitrage identity

Lt(ζr, ζσ) = Lt(ζr − 1, ζσ). (3.4)

Following the de�nition of the historical distribution above, we obtain the following results.

Proposition 5. The arbitrage identity (3.4) is equivalent to the conjunction of two identities

a [ζσ + α (ζr)] + β (ζr) = a [ζσ + α (ζr − 1)] + β (ζr − 1) ,

b [ζσ + α (ζr)] + γ (ζr) = b [ζσ + α (ζr − 1)] + γ (ζr − 1) .

Remark 1. Proposition 5 provides two di�erent equations that should allow us, in general,

to identify both risk aversion parameters ζr and ζσ, in contrast with the common belief that

only the risk aversion to equity could be identi�ed by asset return data. There is, however,

an important exception, which is the case of local zero-leverage:

α (ζr) = α (ζr − 1) . (3.5)

In the case of local zero-leverage, the two equations collapse into β (ζr) = β (ζr − 1) and

γ (ζr) = γ (ζr − 1), and they do not depend on the parameter ζσ anymore.
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Remark 2. If the functions β(·) and γ(·) are constant (identical to zero), the two equations
above collapse into

a [ζσ + α (ζr)] = a [ζσ + α (ζr − 1)] ,

b [ζσ + α (ζr)] = b [ζσ + α (ζr − 1)] .

These two equations are ful�lled if α (ζr) = α (ζr − 1) . This is the case for the model of

Corsi, Fusari, and La Vecchia (2013), and it is the reason why they cannot identify ζσ
aversion to the volatility risk. It is worth noting that in our case this di�culty is solved by

the speci�cation of a non-zero function β(·). We make the conditional distribution L(r|σ),t(·)
depending not only on the current value µt+1 of the volatility factor (the leverage e�ect)

but also on the state variable µt. Without this dependence, there is a leverage e�ect but it

is the local zero-leverage.

Remark 3. Next, we discuss the variance premium. As stressed by Drechsler and Yaron

(2011), the variance premium is non-zero because of two e�ects. First, the conditional

variance of the return di�ers in the historical world and the risk-neutral one, i.e.,

V ar∗[rt+1 |Iσ(t)] = −α∗′′(0)µt+1 − β∗′′(0)µt − γ∗′′(0)

= −α′′(ζr)µt+1 − β′′(ζr)µt − γ′′(ζr)

̸= −α′′(0)µt+1 − β′′(0)µt − γ′′(0)

= V ar[rt+1 |Iσ(t)] ,

following Proposition 4. It turns out that, for reasons explained later, we assume in Section 4

and hereafter that the functions α (·) , β (·) , γ (·) are quadratic. At least, we consider them
as well approximated by their quadratic expansions around zero such that the functions

α′′ (·) , β′′ (·) , γ′′ (·) are approximately constant, and V ar∗[rt+1 |Iσ(t)] ≈ V ar[rt+1 |Iσ(t)] .
Second, the variance premium shows up because the forecast of the volatility factor

di�ers in the historical world and the risk-neutral one, i.e.,

E{V ar[rt+1 |Iσ(t)] |I(t)} ≠ E∗{V ar∗[rt+1 |Iσ(t)] |I(t)} ,

because E[µt+1 |I(t)] ̸= E∗[µt+1 |I(t)] . Actually, following Proposition 4,

E∗[µt+1 |I(t)] = a∗′(0)µt + b∗′(0)

= a′ [ζσ + α (ζr)]µt + b′ [ζσ + α (ζr)] ,
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and it di�ers in general from

E[µt+1 |I(t)] = a′(0)µt + b′(0).

However, we see that this di�erence, which is the main source of the variance premium, in

general does not allow for separate identi�cation of the two risk aversion parameters ζσ and

ζr. We only obtain identi�cation of the risk aversion ζσ in the absence of a leverage e�ect,

i.e., the function α (·) is identically zero. In this case,

E∗[µt+1 |I(t)] = a′ (ζσ)µt + b′ (ζσ) ,

and the risk-neutral conditional expectation of the realized variance (as observed from VIX)

is rightly used, as it is as a common practice, to identify ζσ.

4 The Empirical Model

The �rst two subsections maintain a semiparametric framework with unspeci�ed functions

a(·), b(·), α(·), β(·), γ(·), focusing on the restrictions between the quadratic expansions of

these functions as well as a dynamic model for the volatility factor. Subsections 4.3 speci�es

a parametric model for the joint conditional distribution of return and volatility factor given

the past. This means a parametric model for functions a(·), b(·), α(·), β(·), γ(·). The last two
subsections provide the link functions between several reduced form parameters and three

structural ones, namely the two risk aversion parameters ζr and ζσ and one parameter ϕ

summarizing the leverage e�ect.

4.1 HEAVY Model for the Volatility Factor

As discussed in subsection 3.1. the volatility factor µt is an AR(1) process, whose transition

distribution is given by the conditional Laplace transform

Lσ,t(v) = E[exp
{
−vµt+1

}
|I(t)] = exp {−a(v)µt − b(v)} .

Unfortunately, we have no direct observations of the volatility factor. We only observe daily

realized variance (RVt+1) from high-frequency data over the day [t, t+ 1] and by de�nition

µt = E[RVt+1 |I(t)] .

Therefore, RVt is assumed to be an ARMA(1, 1) process.
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To understand the HEAVY model, it is worth sketching an analogy with the

GARCH(1, 1) model. When a return process rt has a zero conditional mean and its

conditional variance ht = E[r2t+1 |I(t)] is an AR(1) process, r2t is an ARMA(1, 1) process.

However, there is a general agreement not to estimate directly this ARMA process but to

write a GARCH(1, 1) equation

ht+1 = ω + (α + β)ht + α
(
r2t+1 − ht

)
= ω + βht + αr2t+1.

In other words, we constrain the innovation of the AR(1) conditional variance process ht to

be proportional to the martingale di�erence sequence r2t+1 − ht to get a simple model that

can be estimated by Gaussian QMLE. Such an estimator is likely to be much more accurate

than a linear estimator based on a general ARMA(1, 1) representation. The key idea is

that the QMLE estimator works better than the linear estimator in taking into account

the conditional heteroskedasticity of the ARMA(1, 1) process. The HEAVY model works

similarly. Instead of only using the ARMA(1, 1) model of the realized variance process RVt,

we specify the following model for the volatility factor µt:

µt+1 = ϖ + ρµt + κ (RVt+1 − µt) (4.1)

= ϖ + (ρ− κ)µt + κRVt+1.

This model provides a neat representation of the conditional distribution of the return

rt+1 given the past information I(t) and the current realized variance RVt+1. This is the focus

of Corsi, Fusari, and La Vecchia (2013). It actually coincides, by virtue of (4.1), with the

conditional distribution of rt+1 given past information I(t) and the current volatility factor

µt+1. In other words, by replacing RVt+1 with µt+1, we have not changed the conditioning

information (for the �realizing smiles�), but only made it well summarized by (rt+1, µt+1), a

bivariate Markov process of order one.

This model is easy to estimate. Following Shephard and Sheppard (2010), we estimate

it with observations RVt, t = 1, 2, . . . , T and the following recursion:

µt+1(λ) = ϖ + λ1RVt+1 + λ2µt (λ) , t = 1, . . . , T − 1,

λ = (ϖ, λ1, λ2)
′ , µ1 =

1√
T

[
√
T ]∑

t=1

RVt.
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This recursion allows us to compute the quasi-log likelihood function

LT (λ) =
T−1∑
t=1

l[RVt+1 |I(t), λ] ,

where

l[RVt+1 |I(t), λ] = −1

2
log [µt (λ)]−

RVt+1

2µt (λ)

is computed as if the conditional distribution of RVt+1 given I(t) is the square of a normally

distributed random variable with zero mean and variance µt (λ). Maximization of the quasi-

log likelihood delivers the QMLE estimator λ̂ = (ϖ̂, λ̂1, λ̂2)
′ and the recursion

µ̂t+1 = ϖ̂ + λ̂1RVt+1 + λ̂2µ̂t, t = 1, . . . , T − 1,

µ̂1 =
1√
T

[
√
T ]∑

t=1

RVt.

For the purpose of estimating our structural pricing model, we assume hereafter that the

�ltered values µ̂t, t = 1, . . . , T of the volatility factor µt are accurate proxies of the true

values. We ignore the random errors µ̂t − µt, t = 1, . . . , T in subsequent analysis.

4.2 Bridging Conditional Variance and Realized Variance

As discussed in section 2.3., the volatility factor µt, besides following the HEAVY model, is

connected to the conditional variance of the return through the constraint

µt = V ar[rt+1 |I(t)] . (4.2)

From the CAR model for the historical distribution of rt+1 given I(t) (see section 3.1), this

constraint is characterized as

µt = E {V ar[rt+1 |Iσ(t)] |I(t)]}+ V ar {E[rt+1 |Iσ(t)] |I(t)]} , where
E[rt+1 |Iσ(t)] = α′ (0)µt+1 + β′ (0)µt + γ′ (0) ,

V ar[rt+1 |Iσ(t)] = −α′′ (0)µt+1 − β′′ (0)µt − γ′′ (0) ,

such that (4.2) is equivalent to

µt = −α′′ (0)E[µt+1 |I(t)]− β′′ (0)µt − γ′′ (0) + [α′(0)]
2
V ar[µt+1 |I(t)] .
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Moreover, from the historical distribution of µt+1 given I(t), we have

E[µt+1 |I(t)] = a′(0)µt + b′(0),

V ar[µt+1 |I(t)] = −a′′(0)µt − b′′(0).

As such, the constraint above is equivalent to

µt + α′′ (0) [a′(0)µt + b′(0)] + β′′ (0)µt + γ′′ (0) = [α′(0)]
2
[−a′′(0)µt − b′′(0)] .

Both the coe�cients of µt and the constant term must be identically zero, implying that

(4.2) is equivalent to the conjunction of the following two restrictions:

1 + α′′ (0) a′(0) + β′′ (0) + [α′(0)]
2
a′′(0) = 0,

α′′ (0) b′(0) + γ′′ (0) + [α′(0)]
2
b′′(0) = 0.

It is worth interpreting these restrictions in terms of the historical moments of the return

process. First, consider the condition mean E[rt+1 |Iσ(t)] = α′ (0)µt+1 + β′ (0)µt + γ′ (0).

We focus on the parameter

ψ = α′(0),

which encapsulates two e�ects: the leverage e�ect and the volatility feedback. The leverage

e�ect is expected to be negative. It characterizes the instantaneous negative causality

between the asset return and its current volatility. The volatility feedback is expected

to be a positive increasing function of the parameter ζr, measuring the aversion to the

risk of variation in the return. Second, consider the conditional variance V ar[rt+1 |Iσ(t)] =
−α′′ (0)µt+1 − β′′ (0)µt − γ′′ (0). We focus on the parameter

ξ = −α′′ (0) ,

which is another leverage e�ect parameter expected to be between zero and one. The

observation of the current volatility factor must reduce the expected variation of the return.

We summarize the message of this section in the following Proposition.

Proposition 6. The conditional variance of the return can be written as V ar[rt+1 |Iσ(t)] =
ξµt+1 − β′′ (0)µt − γ′′ (0), where the coe�cients β′′(0) and γ′′(0) satisfy the constraints

−β′′ (0) = 1− ξa′(0) + ψ2a′′(0),

−γ′′ (0) = −ξb′(0) + ψ2b′′(0),
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and ψ = α′(0), ξ = −α′′(0) are two reduced form parameters that are both related to the

leverage e�ect (and the volatility feedback for ψ).

Remark. As discussed above, we plan to eventually approximate the function α (·) by its

quadratic approximation αR (·). It is worth noting that the two reduced form parameters

ψ and ξ, both related to the leverage e�ect, are su�cient to characterize this quadratic

approximation with αR (u) = ψu− ξ
2
u2.When the function α (·) coincides with its quadratic

approximation αR (·), the joint nullity of the two parameters ψ and ξ characterizes the

nullity of the quadratic approximation αR (·) and the absence of a leverage e�ect.

4.3 A Fully Parametric Model

4.3.1 Conditional Normality of the Return Given the Volatility Factor

Ané and Geman (2000) (see also Clark, 1973, for a seminal contribution) argue that for

log-returns, conditional normality can be recovered when conditioning on a measure of the

market activity. We follow Corsi, Fusari, and La Vecchia (2013) and Han, Khrapov, and

Renault (2020) to adopt the realized variance RVt+1 over the time interval [t, t+ 1] as a

measure of the market activity. Moreover, following (4.1), we know that, in the framework

of our HEAVYmodel, this is tantamount to conditioning on the current volatility factor µt+1.

In other words, this conditional normal distribution is fully characterized by the conditional

Laplace transform L(r|σ),t(u) = E[exp (−urt+1) |Iσ(t)] = exp
{
−α(u)µt+1 − β(u)µt − γ(u)

}
.

Moreover, the normality implies that

E[exp (−urt+1) |Iσ(t)] = exp

{
−umt

(
µt+1

)
+
u2

2
ωt

(
µt+1

)}
,

wheremt

(
µt+1

)
and ωt

(
µt+1

)
stand respectively for the mean and variance of the conditional

normal distribution of rt+1. Therefore, the conditional normality holds if and only if the

functions α(·), β(·), γ(·) are all quadratic. Following Proposition 6, we specify

α (u) = ψu− ξ

2
u2, (4.3)

β(u) = βu+
[
ξa′(0)− 1− ψ2a′′(0)

] u2
2
,

γ(u) = γu+
[
ξb′(0)− ψ2b′′(0)

] u2
2
,
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which implies that

mt

(
µt+1

)
= ψµt+1 + βµt + γ,

ωt

(
µt+1

)
= ξµt+1 −

[
ξa′(0)− 1− ψ2a′′(0)

]
µt −

[
ξb′(0)− ψ2b′′(0)

]
.

Remark 1. We know from section 3.3 that

LEV = α (ζr)− α (ζr − 1) = ψ − ξ

2

[
ζ2r − (ζr − 1)2

]
= ψ − ξ

(
ζr −

1

2

)
Therefore,

ψ = LEV + ξ

(
ζr −

1

2

)
(4.4)

characterizes the instantaneous impact of the volatility factor µt+1 on the expected return

through both the leverage e�ect, by the term LEV µt+1, and the volatility feedback, by the

term ξµt+1

(
ζr − 1

2

)
. Note that, as already explained, the volatility feedback looks spuriously

instantaneous in a discrete time framework and is proportional to both the expected current

return variation ξµt+1 and the risk aversion ζr (up to a Jensen e�ect). We note that, when

there is no leverage e�ect, i.e., ψ = ξ = 0, not only does the leverage measure LEV equal

zero but there is no volatility feedback.

Remark 2. Of course, the absence of a leverage e�ect does not eliminate the risk

compensation. In this case, the risk compensation is only carried by µt, the value of the

volatility factor at the beginning of the period [t, t+ 1]. More precisely, when ψ = ξ = 0,

we know from (4.3) that β(u) = βu − u2

2
, and we know from the equilibrium pricing

relationship of Proposition 5 that β (ζr) − β (ζr − 1) = 0. Together, they imply that

β = ζr − 1
2
in the absence of a leverage e�ect. It can be easily checked that in this case the

function γ(·) is identically zero. As such, in the absence of a leverage e�ect, the expected

return is

E[rt+1 |Iσ(t)] = E[rt+1 |I(t)] =
(
ζr −

1

2

)
µt,

and we are back to the standard scenario where the risk premium is proportional to the risk

aversion, which can be easily estimated.

Remark 3. It is worth stressing that the conditional normality of the return given I(t)

and some latent variable µt+1 is hardly a restrictive assumption. It allows for skewness and

fat tails not only in the unconditional distribution of the returns but also in the conditional

distribution given the past observations that de�ne the investor's information set I(t). The

mixture variable µt+1, which we dub the volatility factor, maintains some randomness in the
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conditional meanmt(µt+1) and variance ωt(µt+1) of the Gaussian distribution. In particular,

it is much more general than the conditional log-normality given the past returns, a model

that is traditionally used for the QMLE estimation of GARCH models.

4.3.2 ARG(1) Model for the Volatility

We specify a discrete time model inspired by the continuous time model of Heston (1993).

Following Gouriéroux and Jasiak (2006), we consider the simplest version where the

transition dynamics are driven by the Gamma distributions as in the a�ne model of Heston

(1993) and its precursor Feller (1951)'s square root process. More precisely, we use the

ARG(1) model de�ned by Gouriéroux and Jasiak (2006) as follows: (i) The conditional

distribution of µt+1 given some mixing variable Ut is the Gamma distribution with the

shape parameter δ + Ut and a scale parameter c. (ii) The conditional distribution of Ut

given µt is the Poisson distribution with the parameter ρµt/c. This parametric model is

nested in the general a�ne model de�ned in (3.1) with the speci�cation

a(u) =
ρu

1 + cu
, b(u) = δ log (1 + cu) . (4.5)

In this parametric model, the reduced form parameters ω1 = (ρ, c, δ)′ are identi�ed by the

�rst two conditional moments

E[µt+1 |I(t)] = ρµt + δc, (4.6)

V ar[µt+1 |I(t)] = 2ρcµt + δc2.

The interpretation of these three parameters in ω1 is as follows: (i) ρ is the

autocorrelation parameter in the heteroskedastic AR(1) process µt, (ii) c is a scale

parameter, and (iii) δ is the location parameter. Together, they determine the unconditional

mean E[µt+1] = δc/ (1− ρ) .

We recall that together with the additional reduced form parameters ω2 = (γ, β, ψ, ξ)′,

the vector of reduced form parameters ω = (ω′
1, ω

′
2)

′ also de�nes the �rst two conditional

moments of the return

E[rt+1 |Iσ(t)] = ψµt+1 + βµt + γ, (4.7)

V ar[rt+1 |Iσ(t)] = ξµt+1 +
[
1− ρξ − 2ρcψ2

]
µt −

[
δc2ψ2 + ξδc

]
.
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4.4 One Structural Parameter for Two Channels of Leverage E�ect

As explained in the comments introducing Proposition 6, we have introduced two channels

for the leverage e�ect so far. On the one hand, the parameter ξ ∈ [0, 1] captures the idea

that, once the value µt+1 of the volatility factor is known, there remains less uncertainty

about the current return due to the leverage e�ect. On the other hand, the parameter

LEV ≤ 0 captures the idea that, due to the negative instantaneous correlation between the

volatility and the return, the knowledge of µt+1 leads to a reduction of the return forecast

by LEV · µt+1.

4.4.1 Continuous Time Intuition

To understand our discrete-time model with a leverage e�ect, we sketch an analogous

standard continuous time model with stochastic volatility:

dSt

St

= ϑtdt+ σtdW
S
t ,

dσt = ς tdt+ κtdW
σ
t ,

Corr
[
dW S

t , dW
σ
t

]
= ϕ ∈ [−1, 0].

In this model, the orthogonal decomposition

dW S
t = ϕdW σ

t +

√
1− ϕ2dW σ⊥

t

implies that

V ar[dW S
t |dW σ

t , I(t)] =
(
1− ϕ2

)
dt, (4.8)

E

[
dSt

St

∣∣∣∣∣dW σ
t , I(t)

]
= ϑtdt+ ϕσtdW

σ
t .

Therefore, our two leverage e�ect parameters ξ and LEV , the discrete-time analogs of

the impact of leverage on the instantaneous variance and the instantaneous expectation

respectively in (4.8), must be connected by their common dependence on the instantaneous

correlation between the return and the volatility factor. In other words, we must de�ne a

structural parameter ϕ in the discrete-time model such that it is well-suited to produce the

analogs of
(
1− ϕ2

)
dt and ϕσtdW

σ
t .
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4.4.2 Instantaneous Correlation Between Return and Volatility Factor

Following E[rt+1 |Iσ(t)] = α′(0)µt+1 + β′(0)µt + γ′(0) and ψ = α′(0), we have

Cov[rt+1, µt+1 |I(t)] = Cov{E[rt+1|Iσ(t)], µt+1|I(t)} = ψV ar[µ+1|I(t)]

using µt+1 ∈ Iσ(t) = I(t) ∨ {µt+1}. Because µt = V ar[rt+1|I(t)], we have

Corr2[rt+1, µt+1 |I(t)] = ψ2 V ar
2[µ+1 |I(t)]

µtV ar[µt+1 |I(t)]
=
ψ2

k2t
(4.9)

with

k2t =
µt

V ar[µt+1 |I(t)]
=

E[RVt+1 |I(t)]
κ2V ar[RVt+1 |I(t)]

,

where the second equality follows from (4.1) for the HEAVY model. Han, Khrapov,

and Renault (2020) document empirically that there is approximately a time-invariant

proportionality between the two time series E[RVt+1 |I(t)] and V ar[RVt+1 |I(t)] with

observations on S&P500. Hence, we maintain hereafter the approximation that the

coe�cient kt is constant:

k2t =
µt

V ar[µt+1 |I(t)]
≈ E [µt]

E
{
V ar[µt+1 |I(t)]

} = k2.

For the ARG(1) model in (4.6), we have

k2 =
1

c (1 + ρ)

following

E [µt] =
δc

1− ρ
and E

{
V ar[µt+1 |I(t)]

}
= 2ρc

δc

1− ρ
+ δc2.

Following (4.9), ϕ = ψ/k could be interpreted as a correlation coe�cient similar to the

correlation coe�cient ϕ in the continuous time context (4.8). However, in discrete time, this

assessment of the leverage e�ect is contaminated by the volatility feedback. Therefore, we
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write ϕ = LEV/k instead.2 As such, we have

ξ = 1− ϕ2, ϕ ≤ 0, (4.10)

LEV = kϕ, k =
1√

c (1 + ρ)
,

and the identity (4.4) becomes

ψ = kϕ+ ξ

(
ζr −

1

2

)
. (4.11)

Our focus of interest is the possible weakness of identi�cation when the leverage e�ect is

small, which is tantamount to a small absolute value of both LEV and ϕ. The bottom

line is that the coe�cient ϕ ∈ [−1, 0] is a structural parameter that encapsulates the two

channels of leverage e�ect according to (4.10), which are discrete time analogs of (4.8).

4.5 Link Functions

Moment conditions in (4.6) and (4.7) clearly identify the reduced form parameters ω =

(ω1, ω2)
′ with ω1 = (ρ, c.δ)′ and ω2 = (γ, β, ψ, ξ)′. GMM estimation and inference about

these reduced form parameters are discussed in the next section. Here, we provide the link

function g(θ, ω) that allows us to identify the structural parameters θ = (ζr, ζσ, ϕ)
′ from the

reduced form parameters ω. Given the true value of the reduced form parameters, denoted

by ω0, the true value of the structural parameters, denoted by θ0, is the unique solution to

the estimating equations g (θ, ω0) = 0. Therefore, we can conduct inference of θ0 by the

minimum distance approach given a consistent estimator of ω.

The link function g(θ, ω) consists of four estimating equations: the two equations

provided by the arbitrage pricing, see Proposition 5 above, and the two equations (4.10)

and (4.11) provided by the two channels of leverage e�ect. In this section, we consider

the case of a small leverage e�ect, i.e., a small value of ϕ0 in absolute value. We argue

that, in this case, identi�cation of the structural parameters is fragile and their inference is

non-standard.

2By overlooking the volatility feedback e�ect as if ψ = LEV = kϕ, we have slightly twisted the
interpretation of kϕ. The higher the leverage e�ect is, i.e., a larger absolute value of ϕ, the better is
this interpretation of kϕ following (4.11), since ξ is small in this case.
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4.5.1 Two Estimating Equations Provided by Arbitrage Pricing

When making explicit the functions a(·) and b(·) following the ARG(1) model, the two

arbitrage identities of Proposition 5 can be written as

g1(θ, ω) = β̃ {1 + c [ζσ + α (ζr)]} {1 + c [ζσ + α (ζr − 1)]}+ ρLEV = 0, (4.12)

g2(θ, ω) = γ̃ − δ log

{
1− c

LEV

1 + c [ζσ + α (ζr)]

}
= 0,

where

β̃ = β (ζr)− β (ζr − 1) ,

γ̃ = γ (ζr)− γ (ζr − 1) ,

LEV = kϕ.

Identi�cation weakness for the structural parameter ζσ is obvious from (4.12) when the

leverage e�ect parameter ϕ is close to zero. We see that LEV = kϕ being close to zero

implies that β̃ and γ̃ are close to zero. As discussed in Remark 2 below Proposition 5, β̃ =

γ̃ = 0 implies that only ζr is identi�ed (strongly in general) by

LEV = 0 = α (ζr)− α (ζr − 1) .

The bottom line is that among the three structural parameters ζr, ζσ, ϕ, only ζr is strongly

identi�ed by the two estimating functions g1(θ, ω) and g2(θ, ω).

4.5.2 Two Estimating Equations Provided by Channels for Leverage E�ect

The �rst estimating equation about the leverage e�ect comes from (4.10):

g3(θ, ω) = ξ − (1− ϕ2) = 0, (4.13)

a relation between the reduced form parameter ξ and the structural parameter ϕ. A

consistent estimator ξ̂ of ξ can easily be obtained from estimating the parametric model

that characterizes the joint dynamics of (rt+1, µt+1), see the next section. As such, a simple

consistent estimator of the structural parameter ϕ is ϕ̌ = −
√

1−min(ξ̂, 1), where the

negative sign is based on our prior knowledge that the leverage e�ect is negative. However,

there are two nonstandard inference issues here if ϕ is close to 0, and we do not recommend

using ϕ̌ in practice. First, in the link function (4.13), the derivative with respect to ϕ is close
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to zero when ϕ is close to zero. Hence, similarly to situations described by Dufour (1997), ϕ

can be arbitrarily poorly identi�ed when the reduced form parameter ξ is arbitrarily close to

1. Second, asymptotic normality is a poor approximation to the �nite-sample distribution

of ϕ̌ when ϕ is close to zero and it is near the boundary of the parameter space.

The second estimating equation about the leverage e�ect comes from (4.11):

g4(θ, ω) = ψ − kϕ− ξ

(
ζr −

1

2

)
. (4.14)

Since ψ is a reduced form parameter that is strongly identi�ed and ξ is not close to zero

in the case of a small leverage e�ect, the estimating function g4(θ, ω) provides a strongly

identifying relationship between structural parameters ϕ and ζr.
3

5 Inference Robust to a Small Leverage E�ect

In this section, we �rst consider the GMM estimation of the reduced-form parameters.

Then, we plug this consistent GMM estimator of the reduced-form parameters in the link

function and provide an robust con�dence set for the structural parameters. We show that

the proposed con�dence set has correct asymptotic coverage uniformly over the parameter

space that allows for both a large leverage e�ect and an arbitrarily small leverage e�ect. In

particular, the con�dence set is robust even if the structural parameters are weakly identi�ed

when the leverage e�ect is small.

5.1 Estimation of Reduced Form Parameters

As discussed above, we have two sets of reduced-form parameters that characterize the joint

distribution of (rt+1, µt+1): (i) ω1 = (ρ, c, δ)′ that characterizes the conditional distribution

of µt+1 given I(t), and (ii) ω2 = (γ, β, ψ, ξ)′, which jointly with ω1, de�nes the conditional

distribution of the return rt+1 given I
σ
t . As such, the reduced-form parameter ω = (ω1, ω2)

′

is identi�ed by the conditional mean and variance of the volatility factor and the return.

Speci�cally, following (4.6), the reduced-form parameter ω satis�es

E[u1,t+1(ω)|I(t)] = 0, with u1,t+1(ω) = µt+1 − [ρµt + cδ], (5.1)

E[u2,t+1(ω)|I(t)] = 0, with u2,t+1(ω) = µ2
t+1 − [ρ2µ2

t + 2ρc(1 + δ)µt + c2δ(1 + δ)],

3We do acknowledge that this equation holds with some approximations due to the need to accommodate
the volatility feedback in discrete time.
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and, following (4.7),

E[ε1,t+1(ω)|Iσ(t)] = 0, with ε1,t+1(ω) = rt+1 − (ψµt+1 + βµt + γ), (5.2)

E[ε2,t+1(ω)|Iσ(t)] = 0, with ε2,t+1(ω) = r2t+1 −
(
ψµt+1 + βµt + γ

)2 − V ar[rt+1|Iσ(t)],

where

V ar[rt+1|Iσ(t)] = ξµt+1 +
[
1− ρξ − 2ρcψ2

]
µt −

[
δc2ψ2 + ξδc

]
.

These conditional moments are based on the martingale di�erences sequences ut+1(ω) =

(u1,t+1(ω), u2,t+1(ω))
′ and εt+1(ω) = (ε1,t+1(ω), ε2,t+1(ω))

′. Furthermore, they form a set of

sequential moments as in Ai and Chen (2012) since ut+1(ω) ∈ Iσt . It is obvious from (5.1) and

(5.2) that the reduced-form parameter ω can be easily identi�ed. Without loss of generality,

we assume that they are strongly identi�ed such that the standard GMM estimator has an

asymptotic normal distribution.

We estimate ω based on the unconditional moment restrictions

E [ht (ω)] = 0, where ht(ω) = [h′1,t(ω), h
′
2,t(ω)]

′, (5.3)

h1,t (ω) = [x1,t ⊗ u1,t+1(ω1), z1,t ⊗ u2,t+1(ω1)]
′ ,

x1,t = (1, µt), z1,t = (1, µt, µ
2
t ),

h2,t (ω) = [x2,t ⊗ e1,t+1(ω), z2,t ⊗ e2,t+1(ω)]
′ ,

x2,t = (1, µt, µt+1), z2,t = (x2,t, µ
2
t , µtµt+1, µ

2
t+1).

Let ω̂ denote the e�cient two-step GMM estimator based on the moments in (5.3). Let

P denote the distribution of the data W = {(rt, µt) : t ≥ 1} and P denote the parameter

space of P . We make the following high-level assumption on the reduced-form parameters.

Assumption R. The following conditions hold uniformly over P ∈ P . For some positive
de�nite matrix Ω, its estimator Ω̂, and some �xed constant 0 < C <∞.

(i) T 1/2Ω−1/2(ω̂ − ω) →d N(0, I).

(ii) Ω̂− Ω →p 0.

(iii) λmin(Ω) ≥ C−1 and λmax(Ω) ≤ C.

5.2 Identi�cation-Robust Inference for Structural Parameters

The true values of the structural parameter θ = (ζr, ζσ, ϕ)
′ and the reduced-form parameter

ω satisfy the link function g(θ, ω) = 0, where this four-dimensional link function are given

by the two arbitrage pricing conditions in (4.12) and the two channels for the leverage e�ect
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in (4.13) and (4.14). Once the reduced-form parameter ω is identi�ed and estimated, we

rely on this link function for the identi�cation and inference of the structural parameter θ.

In a standard problem without any identi�cation issues of the structural parameter, we

can estimate θ by the minimum distance estimator and construct tests and con�dence sets

for θ using an asymptotically normal approximation for T 1/2(θ̂−θ). However, this standard
method does not work here. This link function only provides weak identi�cation of ζσ, the

price of volatility risk, under a small leverage e�ect, as discussed in section 4.5. In this

case, g(θ, ω̂) is almost �at in ζσ and the minimum distance estimator of ζ̂σ may not even be

consistent, see Stock and Wright (2000). To make the problem even more complicated, the

inconsistency of ζ̂σ has a spillover e�ect on ζ̂r and ϕ̂, making their distribution non-normal

even in large samples, as demonstrated in Andrews and Cheng (2012).

Let g0(θ) denote the link function g(θ, ω) evaluated at the true value of ω and ĝ(θ)

denote its counterpart evaluated at the GMM estimator ω̂. Let G(θ, ω) denote the partial

derivative of g(θ, ω) wrt ω, abbreviated as G0(θ) when evaluated at the true value of ω and

as Ĝ(θ) when evaluated at ω̂.

We construct a con�dence set for θ ∈ Θ := [−M1, 0]× [0,M2]× [−1 + ϵ, 0] by inverting

the test H0 : θ = θ0 vs H1 : θ ̸= θ0, where M1 and M2 are large positive constants and ϵ is

a small positive constant. The test statistic is a QLR statistic that takes the form

QLR(θ0) = T ĝ(θ0)
′Σ̂(θ0, θ0)

−1ĝ(θ0)−min
θ∈Θ

T ĝ(θ)′Σ̂(θ, θ)−1ĝ(θ), (5.4)

where Σ̂(θ1, θ2) = Ĝ(θ1)Ω̂Ĝ(θ2)
′ and Ω̂ is a consistent estimator of Ω.

Before presenting the robust con�dence set based on the QLR statistic, we �rst introduce

some useful quantities and provide a heuristic discussion of the identi�cation problem and

its consequences. De�ne

ηT (θ) = T 1/2 [ĝ(θ)− g0(θ)] = G0(θ)Ω
1/2 · ξT + op(1), (5.5)

where ξT →d N(0, I) following Assumption R. Thus, ηT (·) weakly converges to a Gaussian

process η(·) with covariance function Σ(θ1, θ2) = G0(θ1)ΩG0(θ2)
′. Following (5.5), we can

write T 1/2ĝ(θ) = ηT (θ)+T
1/2g0(θ), where ηT (θ) is the noise from the reduced-form parameter

estimation and T 1/2g0(θ) is the signal from the link function. Under weak identi�cation,

g0(θ) is almost �at in θ, modeled as the signal T 1/2g0(θ) being �nite even for θ ̸= θ0 and

T → ∞. Thus, the signal and the noise are of the same order of magnitude, yielding an

inconsistent minimum distance estimator θ̂.

The identi�cation strength of θ0 is determined by the function T 1/2g0(θ). However, this

function is unknown and cannot be consistently estimated (due to T 1/2). Thus, we take the
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conditional inference procedure as in Andrews and Mikusheva (2016) and view T 1/2g0(θ) as

an in�nite dimensional nuisance parameter for the inference of θ0. The goal is to construct

robust con�dence set for θ0 that has correct size asymptotically regardless of this unknown

nuisance parameter.

Andrews and Mikusheva (2016) provide the conditional QLR test in a nonlinear GMM

problem, where ĝ(θ) is replaced by a sample moment. The same method can be applied

to the present nonlinear minimum distance problem. Following Andrews and Mikusheva

(2016), we �rst project ĝ(θ) onto ĝ(θ0) and construct a residual process

r̂(θ) = ĝ(θ)− Σ̂(θ, θ0)Σ̂(θ0, θ0)
−1ĝ(θ0). (5.6)

The limiting distributions of r̂(θ) and ĝ(θ0) are Gaussian and independent. Thus, conditional

on r̂(θ), the asymptotic distribution of ĝ(θ) no longer depends on the nuisance parameter,

T 1/2g0(θ), making the procedure robust to any identi�cation strength.

Speci�cally, we obtain the 1 − α conditional quantile of the QLR statistic, denoted by

c1−α(r, θ0), as follows. For b = 1, . . . , B, we take independent draws η∗b ∼ N(0, Σ̂(θ0, θ0))

and produce a simulated process,

g∗b (θ) = r̂(θ) + Σ̂(θ, θ0)Σ̂(θ0, θ0)
−1η∗b , (5.7)

and a simulated statistic,

QLR∗
b(θ0) = Tη∗b

′Σ̂(θ0, θ0)
−1η∗b −min

θ∈Θ
Tg∗b (θ)

′Σ̂(θ, θ)−1g∗b (θ). (5.8)

Let b0 = ⌈(1 − α)B⌉, the smallest integer greater than or equal to (1 − α)B. Then the

critical value c1−α(r, θ0) is the b
th
0 smallest value among {QLR∗

b , b = 1, . . . , B}. Finally, we
construct a robust con�dence set for θ by collecting the null values that are not rejected,

i.e., the nominal level 1− α con�dence set is

CST = {θ0 : QLRT (θ0) ≤ c1−α(r, θ0)}. (5.9)

Assumption S. The following conditions hold over P ∈ P , for any θ in its parameter space,
and any ω in some �xed neighborhood around its true value, for some �xed 0 < C <∞.

1. g(θ, ω) is partially di�erentiable in ω, with partial derivative G(θ, ω) that satis�es

||G(θ1, ω)−G(θ2, ω)|| ≤ C||θ1 − θ2|| and ||G(θ, ω1)−G(θ, ω2)|| ≤ C||ω1 − ω2||.

2. C−1 ≤ λmin(G(θ, ω)
′G(θ, ω)) ≤ λmax(G(θ, ω)

′G(θ, ω)) ≤ C.
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Theorem 1. Suppose Assumption R and Assumption S hold. Then,

lim inf
T→∞

inf
P∈P

Pr (θ0 ∈ CST ) ≥ 1− α.

This theorem states that the con�dence set constructed by the conditional QLR test

has correct asymptotic size. Uniformity is important for this con�dence set to cover the

true parameter with a probability close to 1 − α in �nite-samples. This uniform result is

established over a parameter space P that allows for weak identi�cation of the structural

parameter θ. Therefore, the proposed con�dence set is robust to a small leverage e�ect.

6 Simulations

In this section, we investigate the �nite-sample performance of the proposed test and show

that the asymptotic approximations derived above work well in practice. We also compare

it with the standard test that assumes all parameters are strongly identi�ed. The standard

test is known to be invalid under weak identi�cation but its degree of distortion is unknown

in general. We simulate the data using the parametric model in subsection 4.3, where

the true values of the parameters are given in Table 1 based on the values used by Han,

Khrapov, and Renault (2020).4 To investigate the robustness of the procedure with respect

to various identi�cation strengths, we vary both ϕ and T . Speci�cally, we consider ϕ ∈
{−0.40,−0.01} and T ∈ {2, 000; 10, 000}. The number of data points in the empirical

section is approximately 5, 200 for comparison.

Table 1: Simulation Set-up

δ ρ c ζσ ζr

Parameter Values used by Han, Khrapov, and Renault (2020)

0.65 0.50 3.94× 10−3 -10 1.77

To show the e�ect of various identi�cation strengths, we �rst vary the true value of ϕ

and plot the distribution of ζ̂r and ζ̂σ in Figure 1. The reported result is based on 10, 000

observations and 2000 simulation repetitions. The black lines in the middle of the �gures

are the true parameter values. Clearly, the estimators sometimes pile up at the boundaries

4To avoid boundary issues with respect to the estimate of c and δ in �nite-sample, we reparameterize the
moment conditions and link functions in terms of log(c), log(c)+log(δ), and logit(ρ). This reparameterization
forces the scale parameters to be positive and ρ to lie in (0, 1). We �nd that the resulting estimates for
the transformed reduced-form parameters are better approximated by the Gaussian distribution for a given
�nite sample.

35



of the parameter space. As expected, this simulation shows that the Gaussian distribution

is not a good approximation for the �nite-sample distribution of either of the estimators,

especially for ζσ.

Figure 1: Parameter Estimates' t-Statistics

(a) ζσ with ϕ = −0.40 (b) ζσ with ϕ = −0.01

(c) ζr with ϕ = −0.40 (d) ζr with ϕ = −0.01

Next, we study the �nite-sample size of in the standard QLR test and the proposed

conditional QLR test for a joint test for the three structural parameters. The nominal level

of the test is 5%. The critical value of the standard QLR test is the 95% quantile of the

χ2-distribution with 3 degree of freedom. The critical value of the conditional QLR test is

obtained by the stimulation-based procedure in section 5.2, with 1000 simulation repetitions

to approximate the quantile of the conditional distribution. The �nite-sample size is based

on 1000 simulation repetitions.

Simulation results show that the standard QLR test under-rejects in �nite-sample. This

is most severe when the identi�cation is weak. The proposed test, however, has �nite-sample

coverage probabilities close to the nominal level in all cases.

36



Table 2: Finite-Sample Size of the Standard and Proposed Tests

Standard % Proposed % Standard % Proposed %

ϕ T = 2,000 T = 10,000

-0.01 1.70 4.80 2.10 4.90
-0.40 3.70 5.70 3.90 4.00

7 Empirical Application

For the empirical application, we use the daily return on the S&P 500 for rt+1 and the

associated realized volatility computed with high-frequency data for RVt+1. The data is

obtained from SPY (SPDR S&P 500 ETF Trust), an exchange-traded fund that mimics

the S&P 500. This gives us a market index whose risk is not easily diversi�able and can

be used to estimate the prices of risk that investors face in practice. We use the procedure

Sangrey (2019) develops to estimate the integrated total volatility, i.e., the instantaneous

expectation of the price variance. This measure reduces to the integrated di�usion volatility

if prices have continuous paths and it works well in the presence of market microstructure

noise.

Since SPY is one of the most liquid assets traded, we can choose the frequency at which

we sample the underlying price. To balance market-microstructure noise, computational

cost, and e�ciency of the resultant estimators, we sample at the 15-second frequency. We

annualize the data by multiplying rt+1 by 252 and RVt+1 by 2522. The data starts in 2003

and ends in June 2023. Since the asset is only traded during business hours, this leads to

5159 days of data with an average of approximately 160 observations per day. We compute

rt+1 as the daily return from the open to the close of the market, the interval over which we

can estimate the volatility. This avoids specifying the relationship between overnight and

intra-day returns. We preprocess the data using the pre-averaging approach as in Podolskij

and Vetter (2009) and Aït-Sahalia, Jacod, and Li (2012).

Once we have computed the realized volatility, we apply the HEAVY estimation

procedure of Shephard and Sheppard (2010) to compute µt+1. We �nd ϖ = 0.002,

λ1 = 0.669, and λ2 = 0.312. As we would expect, µt+1 is very persistent, but not quite a

unit root: λ1 + λ2 = 0.981. The original Shephard and Sheppard (2010) paper estimates

λ1 = 0.564 and λ2 = 0.417. The increased weight on RVt+1 is likely due to a combination

of having more recent data with substantially less market microstructure noise and a more

precise estimate of RVt+1 due to Sangrey (2019).

To see how the data move over time, we plot their time series in Figure 2. We also

plot the joint unconditional distribution in Figure 2 to see the static relationship between
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Figure 2: S&P 500 Volatility and Log-Return

(a) Time Series (b) Joint Distribution

the two series. The volatility has a long right tail, a typical gamma-type distribution.

The returns have a bell-shaped distribution. The RVt+1 and rt+1 processes appear slightly

negatively correlated (−0.09), as shown by the regression line in the joint plot, corroborating

Bandi and Renò (2012) and Aït-Sahalia, Fan, and Li (2013). Conversely, the µ̂t+1 and

rt+1 processes appear slightly positively correlated (0.03), The theory predicts that the

instantaneous correlation between shocks to µt+1 and shocks to rt+1 is negative, but the

lagged relationship is positive.

Figure 3: S&P 500 Volatility and Log Return

Because Figure 2 covers a long period and is therefore hard to see, we also zoom in

and examine the behavior in 2021. We choose 2021 because it contains neither a lull nor
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huge spikes in volatility. The RVt+1 and µ̂t+1 are strongly correlated, with µt+1 lagging the

behavior of RVt+1 as we would expect. The strong average correlation (0.80 over 2003-2023)

of the two processes mitigates against potential misspeci�cation from the HEAVY process

because the vast majority of movement in µ̂t+1 arises from variation in RVt+1 and µ̂t+1 is

only slightly more persistent than RVt+1, which is consistent with the literature. We can

exploit the di�erent correlations to separately identify ϕ and the volatility risk price ζσ in

an appropriately speci�ed structural model. To better understand the volatility and return

process we report a series of summary statistics in Table 3.

Table 3: Summary Statistics

rt+1 RVt+1 µt+1

Mean 1.12 3698.59 3758.36
Standard Deviation 66.94 9098.23 8311.23
Skewness −0.58 11.25 9.57
Kurtosis 16.81 205.43 9.57

We report the estimates and con�dence intervals for the reduced-form parameters c, δ,

and ρ. The con�dence intervals reported here use the Gaussian limiting theory, i.e., the

point estimates ±1.96 standard errors.5

Table 4: Parameters that Govern the Volatility Process

Point Estimate 95.00% Con�dence Interval

c 8.21 (4.84, 13.91)
δ 79.88 (46.47, 137.31)
ρ 0.81 (0.73, 0.87)

For con�dence intervals of the three structural parameters, we �rst compute their

joint con�dence set based on the conditional QLR test and then project it to each of the

components. We use 2000 simulations to compute the quantile for the QLR statistic.

The results in Table 5 have a few notable features. First, and most importantly, we

reject the hypothesis that the price of volatility risk equals zero with the identi�cation-

robust test. The largest value lies within ζσ's con�dence interval is −11.54. The data are

unable to reject the combination of large negative values of ζσ and zero values of ζr. In

other words, we cannot reject that the aversion to volatility is capable of explaining the

entire equity premium. We can, however, reject the idea that the aversion to equity risk

5We �rst obtain con�dence intervals for log(c) and log(c) + log(δ), and transform them into con�dence
intervals for c and δ. Similarly, we create the con�dence interval for ρ by inverting the interval for logit(ρ).
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Table 5: Structural Parameters

95% Con�dence Interval

ϕ (-0.29 -0.33)
ζσ (-23.85, -11.54)
ζr (0.00, 0.33)

is capable of explaining the entire equity premium. Our con�dence interval for ϕ and the

upper bound for ζσ are consistent with �ndings in the literature.

8 Conclusion

It is commonly believed that option price data alone allows for the identi�cation of risk

aversion to volatility of volatility. We prove in this paper that, in the presence of a leverage

e�ect, observations on the underlying asset return allow for identi�cation without any option

data. Moreover, in contrast with a widespread practice, the presence of a leverage e�ect

implies that the variance risk premium does not separately identify the risk aversion to

volatility of volatility and the standard risk aversion to volatility level.

While our general identi�cation result is model-free, we provide a simple parametric

model for the sake of numerical illustration of our identi�cation robust strategy. This novel

inference strategy applies the approach put forward by Andrews and Mikusheva (2016)

in the context of GMM to minimum distance problems. This extension may be useful in

other �elds of structural econometrics. For the sake of clarity, our empirical illustration

is developed in a simpli�ed parametric model. This model could be enriched by more

sophisticated dynamics of the volatility factor. An additional useful extension would be the

introduction of two volatility factors, one for short term volatility and the other for long

term volatility. This extension is natural because the economic uncertainty that we want to

capture with volatility of volatility is well understood by the long run risk model (Bansal

and Yaron, 2004).

Moreover, following an argument put forward by Bandi and Renò (2016), we suspect

that our identi�cation strategy based on the leverage e�ect would be more compelling with

a model allowing for jumps both in return and volatility. While accommodating jumps in

a discrete time model in general requires the Markov switching regime models, we could

resort to the model proposed by Augustyniak, Bauwens, and Dufays (2019).

Of course, although our focus is the possibility of identi�cation without data from the

derivative markets, it does not mean that option price data should be wasted when they
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are available. They obviously in general allow us to obtain much tighter con�dence sets

for structural parameters, see e.g., the empirical results of Han, Khrapov, and Renault

(2020). Our result must rather be understood as a possibility result. As in other contexts,

the possibility of nonparametric identi�cation of a structural model is worth studying

even though empirical implementations generally resort to a parametric speci�cation. It

could be argued that our results are more robust to misspeci�cation than those obtained

with additional option data. For instance, it is well documented that stochastic volatility

processes often feature some long memory, see e.g., Comte and Renault (1998). Although

long memory is arguably observationally equivalent to structural breaks (or switching

regimes) as far as underlying asset returns are concerned, option pricing is much more

sensitive to the model choice. Our method avoids this potential model misspeci�cation

issue by using asset return data only for inference on the structural parameters.

Appendix

Proof of Proposition 3. By the Law of Iterated Expectations,

Lt(ζr, ζ) = E[exp
{
−ζµt+1

}
L(r|σ),t(ζr) |I(t)]

= B (ζr, I(t))E[exp
{
−ζµt+1

}
A
(
ζr, µt+1

)
|I(t)] ,

and

Lt(ζr − 1, ζ) = E[exp
{
−ζµt+1

}
L(r|σ),t(ζr − 1) |I(t)]

= B (ζr − 1, I(t))E[exp
{
−ζµt+1

}
A
(
ζr − 1, µt+1

)
|I(t)] .

From the condition in (2.8), we have

A
(
ζr, µt+1

)
= A

(
ζr − 1, µt+1

)
.

Therefore,

Lt(ζr, ζ) = Lt(ζr − 1, ζ) ⇐⇒ B (ζr, I(t)) = B (ζr − 1, I(t)) .

■

Proof of Proposition 4. We �rst consider the risk-neutral distribution of the volatility

41



factor. The risk-neutral conditional Laplace transform of µt+1 given I(t) is

L∗
σ,t(v) =

Lt(ζr, v + ζσ)

Lt(ζr, ζσ)
. (A.1)

The numerator of (A.1) can be made explicit with the conditional Laplace transforms de�ned

in (3.1) and (3.2):

Lt(ζr, v + ζσ) = E[exp
(
−ζrrt+1 − (v + ζσ)µt+1

)
|I(t)]

= E[exp
{
−(v + ζσ)µt+1

}
E[exp {−ζrrt+1} |Iσ(t)] |I(t)]

= E[exp
{
−(v + ζσ)µt+1

}
E[exp

{
−α(ζr)µt+1 − β(ζr)µt − γ(ζr)

}
|I(t)]

= exp {−β(ζr)µt − γ(ζr)} exp {−a [v + ζσ + α(ζr)]µt − b [v + ζσ + α(ζr)]} .

We get the denominator of (A.1) by setting v = 0 and simplify the ratio to obtain

L∗
σ,t(v) = exp {−a [v + ζσ + α(ζr)]µt + a [ζσ + α(ζr)]µt}

exp {−b [v + ζσ + α(ζr)] + b [ζσ + α(ζr)]} .

Analogous to (3.1), the risk-neutral conditional Laplace transform of the volatility factor

can be written as

E∗[exp
(
−vµt+1

)
|I(t)] = exp {−a∗(v)µt − b∗(v)} ,

where

a∗(v) = a [v + ζσ + α(ζr)]− a [ζσ + α(ζr)] ,

b∗(v) = b [v + ζσ + α(ζr)]− b [ζσ + α(ζr)] .

Next, we consider the risk-neutral distribution of the return conditional on the volatility

factor. We use the following Lemma.

Lemma A.1 For all (u, v) ,

L∗
t (u, v) = E∗[exp

(
−vµt+1

)
gt(u

∣∣µt+1

)
|I(t)] ,

where

gt(u
∣∣µt+1

)
= exp

[
−α∗ (u)µt+1 − β∗ (u)µt − γ∗ (u)

]
with functions α∗ (·) , β∗ (·) , γ∗(·) de�ned by Proposition 3.
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The conditional risk neutral distribution of the return given the volatility factor is de�ned

by the decomposition (from the Law of Iterated Expectations, see (3.3) for the historical

analog):

L∗
t (u, v) = E∗[exp

{
−vµt+1

}
L∗

(r|σ),t(u) |I(t)] . (A.2)

Moreover (see e.g., argument in Bierens, 1982), this decomposition is unique. Hence, the

result of the lemma allows us to conclude that

L∗
(r|σ),t(u) = gt(u

∣∣µt+1

)
= exp

[
−α∗ (u)µt+1 − β∗ (u)µt − γ∗ (u)

]
.

■

Proof of Lemma A.1. We know from (2.3) that

L∗
t (u, v) =

Lt(u+ ζr, v + ζσ)

Lt(ζr, ζσ)
=
Nt

Dt

.

The numerator can be written as

Nt = E[exp
{
−(u+ ζr)rt+1 − (v + ζσ)µt+1

}
|I(t)]

= E[exp
{
−(v + ζσ)µt+1

}
E[exp {−(u+ ζr)rt+1} |Iσ(t)] |I(t)]

= exp {−γ(u+ ζr)− β(u+ ζr)µt}E[exp
{
− [v + ζσ + α (u+ ζr)]µt+1

}
|I(t)] .

Similarly, the denominator can be written as

Dt = exp {−γ(ζr)− β(ζr)µt}E[exp
{
− [ζσ + α (ζr)]µt+1

}
|I(t)] .

By computing the ratio Nt/Dt, we get

L∗
t (u, v) = exp {−γ∗(u)− β∗(u)µt}

Bt

Ct

with

Bt = E[exp
{
− [v + ζσ + α (u+ ζr)]µt+1

}
|I(t)] ,

Ct = E[exp
{
− [ζσ + α (ζr)]µt+1

}
|I(t)] .

Using the de�nition of α∗(·), we can write
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Bt = E[exp
{
− [v + ζσ + α∗(u) + α(ζr)]µt+1

}
|I(t)]

= exp {−a [v + ζσ + α∗(u) + α(ζr)]µt} exp {−b [v + ζσ + α∗(u) + α(ζr)]} .

By de�nition of functions a∗(·) and b∗(·),

a [v + ζσ + α∗(u) + α(ζr)] = a∗ [v + α∗(u)] + a [ζσ + α(ζr)] ,

b [v + ζσ + α∗(u) + α(ζr)] = b∗ [v + α∗(u)] + b [ζσ + α(ζr)] .

Hence,

Bt = exp {−a∗ [v + α∗(u)]µt − a [ζσ + α(ζr)]µt}
exp {−b∗ [v + α∗(u)]− b [ζσ + α(ζr)]} .

For u = v = 0, we get

Ct = exp {−a [ζσ + α(ζr)]µt − b [ζσ + α(ζr)]} .

By computing the ratio, we obtain

Bt

Ct

= exp {−a∗ [v + α∗(u)]µt} exp {−b∗ [v + α∗(u)]} .

Therefore, we have shown that

L∗
t (u, v) = exp {−γ∗(u)− β∗(u)µt} exp {−a∗ [v + α∗(u)]µt} exp {−b∗ [v + α∗(u)]}

= E∗[exp
(
−vµt+1

)
gt(u

∣∣µt+1

)
|I(t)] ,

where

gt(u
∣∣µt+1

)
= exp

[
−α∗ (u)µt+1 − β∗ (u)µt − γ∗ (u)

]
.

This proves the desired result in the lemma. ■

Proof of Proposition 5. From (3.2) and (3.3), we have

Lt(u, v) = E[exp
{
−vµt+1

}
exp

{
−α (u)µt+1 − β (u)µt − γ (u)

}
|I(t)]

= exp {−β (u)µt − γ (u)} exp {−a [v + α (u)]µt} exp {−b [v + α (u)]} .

Therefore, the condition

Lt(ζr, ζσ) = Lt(ζr − 1, ζσ)

44



is equivalent to the conjunction of two conditions

a [ζσ + α (ζr)] + β (ζr) = a [ζσ + α (ζr − 1)] + β (ζr − 1) ,

b [ζσ + α (ζr)] + γ (ζr) = b [ζσ + α (ζr − 1)] + γ (ζr − 1) .

■
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