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Abstract: Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an in-
creased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this
risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correla-
tions between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently
shown promise for the prediction of postoperative white matter injury in this patient population, and
invasive cerebral microdialysis biomarkers. We compared cerebral tissue oxygen saturation (StO2),
relative total hemoglobin concentration (rTHC), and relative cerebral blood flow (rCBF) measured
by optics against the microdialysis biomarkers of metabolic stress and injury (lactate–pyruvate ra-
tio (LPR) and glycerol) in neonatal swine models of deep hypothermic cardiopulmonary bypass
(DHCPB), selective antegrade cerebral perfusion (SACP), and deep hypothermic circulatory arrest
(DHCA). All three optical parameters were negatively correlated with LPR and glycerol in DHCA
animals. Elevation of LPR was found to precede the elevation of glycerol by 30–60 min. From these
data, thresholds for the detection of hypoxic-ischemia-associated cerebral metabolic distress and
neurological injury are suggested. In total, this work provides insight into the timing and mechanisms
of neurological injury following hypoxic-ischemia and reports a quantitative relationship between
hypoxic-ischemia severity and neurological injury that may inform DHCA management.

Keywords: cardiopulmonary bypass; deep hypothermic circulatory arrest; diffuse optics; neuromoni-
toring; cerebral hemodynamics; cerebral microdialysis; congenital heart surgery; hypoxic-ischemia

1. Introduction

Adverse neurodevelopmental outcomes are prevalent in neonates with congenital
heart disease who require surgical intervention in the first weeks of life [1,2]. Cyan-
otic defects have been associated with delayed brain maturation [3], and these neonates
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have a high risk of post-natal hypoxic-ischemic neurological injury. The inflammatory
and metabolic vulnerability of myelinating oligodendrocytes [4] potentially underlies the
high incidence (~50%) of white matter injury following cardiac surgery [5–7]. Thus, neu-
romonitoring strategies to identify neurological vulnerability are needed for the detection,
treatment, and prevention of neurological injury.

In neonates requiring aortic arch repair, the use of deep hypothermia (DH) in con-
junction with cardiopulmonary bypass (CPB) helps mitigate metabolic vulnerability by
decreasing the metabolic demands of the brain and thereby permits periods of circulatory
arrest that are required to visualize and repair certain cardiac malformations. Deep hy-
pothermic circulatory arrest (DHCA, total cessation of blood flow) and selective antegrade
cerebral perfusion (SACP, maintenance of unilateral carotid blood flow via selective cannu-
lation and perfusion of the carotid artery) are the two most commonly employed strategies
in neonates undergoing aortic arch surgery. Recently, we reported on the cerebral hemody-
namic changes and neurometabolic derangements associated with the use of DHCA and
SACP, as well as full-body DHCPB, in a neonatal swine model [8]. The use of non-invasive,
continuous diffuse optical measurements of cerebral hemodynamics throughout deep
hypothermia permitted subject-specific characterization of hypoxic-ischemic conditions
during DHCA, as well as the detection of significant hyperoxic and hypervolemic condi-
tions during full-body DHCPB. Concurrent invasive cerebral microdialysis sampling of the
lactate–pyruvate ratio (LPR), a biomarker of metabolic distress, and glycerol, a biomarker
of neurological injury, were significantly elevated in both DHCA and DHCPB groups. Look-
ing forward, an optimal level of cerebral oxygenation and perfusion during surgery, that is,
neither too low nor too high, is desirable for the prevention of intraoperative neurological
injury [9], and non-invasive optical neuromonitoring may be a valuable tool for this task.
The lack of knowledge regarding how current management strategies impact the brain has
largely limited substantial improvements in postoperative neurological outcomes following
congenital heart surgery over the last two decades [10].

To this end, we build upon prior work to examine the association of non-invasive opti-
cal metrics of cerebral hemodynamics with invasive neurometabolic biomarkers sampled
by cerebral microdialysis. This correlative study was carried out in neonatal swine who
were placed on cardiopulmonary bypass and were continuously monitored throughout
cooling, deep hypothermia (18 ◦C), and rewarming to normothermia. We separately exam-
ined subjects who underwent circulatory arrest (DHCA) and continuous cerebral perfusion
(SACP or DHCPB) to characterize the differential underlying injury mechanisms. In the
future, knowledge about these physiologic relationships could inform management strate-
gies based on individual neuromonitoring targets, help optimize DHCPB management,
and prevent neurological injury.

2. Materials and Methods

In this study, we performed new analyses of data from a prospective, randomized
cohort study whose methods have been previously described [8,11]. We examined a
subset of thirty neonatal female Yorkshire swine (6–10 days old, 2.5–5 kg) that underwent
cardiopulmonary bypass (CPB) support with cooling to deep hypothermia; subjects from
the original study that did not undergo cooling were excluded from the present analysis.
Invasive sampling of neurometabolic biomarkers of neurological injury is summarized
alongside corresponding non-invasive optical measurements of cerebral hemodynamics.
The correlation between invasive and non-invasive modalities was assessed to explore the
potential utility of cerebral hemodynamic measurements as a quantitative, non-invasive
surrogate measure of neurometabolic injury.

2.1. Selection of Animal Model

Neonatal swine models have provided foundational data contributions to our un-
derstanding of the impact of bypass and circulatory arrest on the brain [11–16]. This
statement is also true for the clinical translation of diffuse optical techniques for pediatric
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neuromonitoring [17–24] due to comparability in the anatomical thickness of superficial
tissue (i.e., scalp and skull). The animal model used here was developed based on surgical
practices at our institution. This investigation builds upon and connects these two bodies
of literature to advance the translation of non-invasive optical neuromonitoring to clinical
intraoperative management of neonates.

2.2. Neurological Monitoring

The methods for neurological monitoring have been previously detailed [8,11,22] but
are briefly summarized herein. Following anesthetic induction and intubation, and prior to
initiation of cardiopulmonary bypass support, neurological monitoring modalities were
placed. These monitoring modalities included nasopharyngeal temperature (NPT, ◦C) for
the guidance of hypothermic therapy, intracranial brain temperature (ICT, ◦C; CC1-P1,
Integra LifeSciences; Plainsboro, NJ, USA), cerebral microdialysis (CMA 71 Elite, mDialysis,
Stockholm, Sweden), and non-invasive frequency-domain diffuse optical spectroscopy
(FD-DOS) and diffuse correlation spectroscopy (DCS). Invasive measures of ICT and micro-
dialysate samples were acquired in the right frontal cortex, symmetrically contralateral to
non-invasive optical neuromonitoring measurements over the left frontal cortex. Following
placement, microdialysate samples were collected in 30 min intervals corresponding to
experimental periods of normothermic bypass, cooling, deep hypothermia, rewarming,
and end of study. Measurements from all other instruments were recorded continuously
for the duration of the protocol.

2.3. Cardiopulmonary Bypass and Deep Hypothermia

The procedure and timing for the initiation of cardiopulmonary bypass, deep hy-
pothermia, and circulatory arrest or selective antegrade cerebral perfusion are illustrated in
Figure 1 and are described in Mavroudis et al. [8,11]. All subjects (n = 30) were stabilized
on CPB (flow rate = 150 mL/kg/min) at normothermia (NPT = 37 ◦C), and baseline mea-
surements were acquired for five minutes. Animals were then cooled to deep hypothermia
(NPT = 18 ◦C) at a target rate of 1 ◦C per minute. After attainment of 18 ◦C, the subjects
were randomized to receive either continuous, full-body deep hypothermic cardiopul-
monary bypass support (DH CPB; n = 10), deep hypothermic selective antegrade cerebral
perfusion (SACP; n = 10), or deep hypothermic circulatory arrest (DHCA; n = 10) for 40 min.
To initiate DHCA, the CPB arterial outlet flow was turned off and clamped, with venous
drainage remaining open for patient exsanguination (i.e., removal of blood from the body).
Once the lack of venous return became apparent, the venous drainage was also clamped.
Donor blood was added as needed to ensure a minimum hematocrit of 30%. Immediately
prior to reinitiating CPB in DHCA animals, 2 meq/kg of sodium bicarbonate was added.
Immediately prior to rewarming, 0.5 g/kg mannitol was added in all animals. Following
reperfusion of DHCA animals, all groups were rewarmed to normothermia (NPT = 37 ◦C)
at a target rate of 1 ◦C per minute.

2.4. Diffuse Optical Monitoring of Cerebral Hemodynamics

Non-invasive diffuse optical neuromonitoring of cerebral hemodynamics was con-
ducted using the combined techniques of frequency-domain diffuse optical spectroscopy
(FD-DOS) and diffuse correlation spectroscopy (DCS). Details regarding FD-DOS/DCS
optical instrumentation and data processing have been previously reported [22] and are
briefly summarized here.

Using a customized commercial FD-DOS instrument (Imagent, ISS Inc., Champaign,
IL, USA) with radio-frequency (110 MHz) intensity-modulated near-infrared light sources
and two photomultiplier tube detectors, the AC intensity and phase were measured as
a function of source–detector separation. Measurements were acquired at a sampling
frequency of 10 Hz from four source–detector separations ranging from 1.5–3 cm. These
data were then used to derive absolute tissue absorption and scattering properties (µa and
µs
′, respectively) at four wavelengths (λ = 690, 725, 785, and 830 nm) using a semi-infinite
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approximation [25,26]. Assuming constant cerebral tissue water content of 75% [27], these
measured absorption coefficients were then used to quantify cerebral tissue concentrations
of oxy- and deoxyhemoglobin ([HbO2] and [Hb], respectively; µmol/L) [22,28,29]. Total
hemoglobin concentration (THC, µmol/L) and tissue oxygen saturation (StO2, %) were
computed as:

THC = [Hb] + [HbO2] (1)

StO2(%) =
[HbO2]

[Hb] + [HbO2]
× 100% (2)Metabolites 2021, 11, x FOR PEER REVIEW 4 of 17 

 

 

 
Figure 1. Experimental Protocol and Cerebral Microdialysis (MD) Sampling Timepoints. Following 
the initiation of cardiopulmonary bypass (CPB) support, animals were maintained at normothermia 
(nasopharyngeal temperature, NPT, 37 °C) for 30 min. The animals were then cooled to deep hypo-
thermia (NPT 18 °C) and received one of three different perfusion strategies for 40 min: deep hypo-
thermic CPB (DHCPB), deep hypothermic circulatory arrest (DHCA), or selective antegrade cere-
bral perfusion (SACP). All animals were then returned to CPB support and rewarmed to normo-
thermia. Four MD sampling timepoints corresponding to normothermic bypass, cooling, deep hy-
pothermia, and rewarming are indicated by circles. For each sample, the corresponding 30 min cer-
ebral sampling window is indicated by a solid black line. The dotted lines indicate the 20 min delay 
time used to account for metabolic reaction time, metabolite “washout” time, and transit time of 
dialysate from the brain to the MD collection vial (note, the solid and dotted lines for MD samples 
2 and 4 are above those for MD samples 1 and 3). 
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Figure 1. Experimental Protocol and Cerebral Microdialysis (MD) Sampling Timepoints. Following
the initiation of cardiopulmonary bypass (CPB) support, animals were maintained at normother-
mia (nasopharyngeal temperature, NPT, 37 ◦C) for 30 min. The animals were then cooled to deep
hypothermia (NPT 18 ◦C) and received one of three different perfusion strategies for 40 min: deep
hypothermic CPB (DHCPB), deep hypothermic circulatory arrest (DHCA), or selective antegrade
cerebral perfusion (SACP). All animals were then returned to CPB support and rewarmed to nor-
mothermia. Four MD sampling timepoints corresponding to normothermic bypass, cooling, deep
hypothermia, and rewarming are indicated by circles. For each sample, the corresponding 30 min
cerebral sampling window is indicated by a solid black line. The dotted lines indicate the 20 min
delay time used to account for metabolic reaction time, metabolite “washout” time, and transit time
of dialysate from the brain to the MD collection vial (note, the solid and dotted lines for MD samples
2 and 4 are above those for MD samples 1 and 3).

DCS measurements were performed at a source–detector separation of 2.5 cm us-
ing custom instrumentation with a continuous-wave, long-coherence length (>10 m), a
λ = 785 nm laser source (RCL-080-785S; CrystaLaser Inc., Reno, NV, USA), and two detec-
tion arrays of four single-photon-counting avalanche photodiode detectors (SPCM-AQ4C;
Excelitas Technologies Corp., Waltham, MA, USA). The DCS calculations of the blood flow
index (BFI) incorporated the concurrent measurements of tissue absorption and scattering
properties from FD-DOS. BFI was derived by fitting the average (i.e., average across all de-
tectors) hardware-determined (FLEX03OEM-8CH; Correlator.com, Bridgewater, NJ, USA)
temporal intensity autocorrelation function using an integration time of 3 s per measure-
ment; for this calculation, we employed solutions to the correlation diffusion equation for a
semi-infinite homogenous medium [30].

All continuous time-series data were synchronized using 15 s epoch averages. Mea-
sures of relative THC and cerebral blood flow (rCBF; %) at timepoint t were computed as:

rTHC(t) =
THC(t)

THCbaseline
× 100% (3)

rCBF(t) =
BFI(t)

BFIbaseline
× 100% (4)

Here, the baseline THC and BFI values were calculated as the mean THC and BFI
measured during a 5 min baseline period immediately prior to cooling.

2.5. Cerebral Microdialysis

Cerebral microdialysis is an established, minimally invasive, clinical neurometabolic
monitoring technique that enables the direct sampling of metabolite concentrations in the
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interstitial fluid of the brain [31]. A microdialysis sampling catheter (10 mm membrane
length, 60 mm shaft length, and 220 mm outlet tubing length; 70 Brain Microdialysis
Catheter 60/10, mDialysis, Stockholm, Sweden) was primed with sterile saline, inserted
1–1.5 cm deep into the parenchyma of the brain, and dialysate was continuously acquired
at a rate of 1 µL/min. Following a minimum equilibration period of 30 min, dialysate
samples were collected in 30 min intervals. The duration of the equilibration period is in
line with current clinical practice [31,32] and provided time for (1) the diffusion of cerebral
metabolites into the prime fluid and the transit of this equilibrated dialysate through the
length of the outlet tubing to the collection vial and (2) recovery of the blood–brain barrier
following membrane insertion. Collected dialysate samples were analyzed for concentra-
tions of pyruvate, lactate, glycerol, and glucose (ISCUS FlexTM Microdialysis Analyzer,
mDialysis, Stockholm, Sweden). These metabolite concentrations reflect the balance of
metabolic substrate delivery and metabolism and are thus highly sensitive biomarkers
of hypoxic-ischemic derangements resulting in “energy failure”. Specifically, elevation
of the lactate–pyruvate ratio (LPR) occurs in the setting of anaerobic respiration and low
oxygen availability [31]. While typically <25 under normal conditions, the persistence of
insufficient oxygen delivery during hypoxic-ischemia leads to increasing lactate production
and the elevation of LPR; LPR >40 is a generally accepted threshold defining cerebral
metabolic distress/crisis and has been associated with the degree of brain atrophy and
functional outcomes in traumatic brain injury (TBI) patients [31,33,34].

Elevated glycerol has also been repeatedly associated with mortality and poor neuro-
logical outcomes in clinical TBI patients [35]. Glycerol concentrations in the brain are known
to accumulate via uptake of systemically circulating glycerol, glycolytic breakdown of glu-
cose, or breakdown of glycerophospholipids (also known as phosphoglycerides) [32,36]. In
the setting of neurological injury, the latter mechanism predominates due to the degradation
of glycerophospholipids in cell membranes during apoptosis [37,38]. Normal cerebral glyc-
erol concentrations have been observed to range between 50–100 µmol/L in humans [39];
in TBI patients, glycerol concentrations exceeding 80–150 µmol/L have been associated
with poor outcomes, including increased mortality [35].

Thus, the lactate–pyruvate ratio (LPR) and glycerol concentrations were incorporated
into the present analysis as surrogate measures of metabolic distress and neurological
injury, respectively [31,36].

2.6. Statistical Analysis

All statistical analyses were carried out using MATLAB 2020a (The MathWorks Inc.,
Natick, MA, USA).

2.6.1. Longitudinal Changes in Cerebral Physiology

For each microdialysis sample, corresponding values of non-invasive, optically mea-
sured cerebral hemodynamic parameters and invasive intracranial temperature were ex-
tracted from continuous monitoring data. Optically measured cerebral hemodynamic
parameters included the cerebral tissue blood oxygen saturation (StO2, %), relative total
hemoglobin concentration (rTHC, % baseline), and relative cerebral blood flow (rCBF, %
baseline). Based on a delay time sensitivity analysis (see Supplementary Materials), a
20 min delay time between microdialysis sampling and cerebral hemodynamic parameters
was incorporated to account for the metabolite reaction time, the “washout” time for the
metabolite to enter the extracellular space, and the transit time of the dialysate from the
brain to the collection tube. Thus, corresponding cerebral hemodynamic parameter values
were calculated as the mean of 30 min of continuous data, which concluded 20 min prior to
the time of dialysate collection (Figure 1).

For each experimental period, differences in physiologic parameters between groups
(DHCPB, SACP, or DHCA) were examined using the non-parametric Kruskal–Wallis test
followed by post hoc pairwise comparisons. A Bonferroni correction for multiple compar-
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isons was employed to identify significant pairwise group differences using an adjusted
significance level of p < 0.05.

2.6.2. Correlation between Cerebral Hemodynamics and Biomarkers of Neurological Injury

Linear mixed-effects models with random slope and intercept effects were applied to
examine the relationship between microdialysis biomarkers of neurological injury (LPR,
glycerol) and cerebral hemodynamic parameters. In our prior study, cerebral hemodynam-
ics and microdialysis biomarkers during deep hypothermia were found to be comparable
between DHCPB and SACP groups, with the exception of DHCPB exhibiting modestly
higher StO2 compared to SACP (median [IQR] = 73.5% [65.6, 75.4] vs. 64.4% [54.7, 67.7],
p = 0.033) [8]. In contrast, DHCA was found to have significantly lower StO2, rTHC, and
rCBF and higher LPR and glycerol concentrations compared to all other groups. Thus,
relationships were separately assessed for animals that received continuous deep hypother-
mic cerebral perfusion (DHCPB and SACP groups, “No DHCA”) versus animals that
underwent circulatory arrest (DHCA). The normality of parameters was assessed using
the Kolmogorov–Smirnov test [40]. Both LPR and glycerol concentration were found to
have significant non-normality and exhibited positively skewed distributions. Thus, micro-
dialysis biomarkers were log-transformed prior to correlation analysis. The significance
of correlations was assessed using the p-value of the fitted slope. The goodness of fit to a
linear relationship was evaluated by adjusted R2.

Initial correlation analysis was performed using a 20 min delay time between cerebral
hemodynamics and microdialysis sampling. Secondary correlation analysis was also
performed using a 60 min delay time to examine the effect of delay time on the relationship
between microdialysis parameters and cerebral hemodynamics. Cerebral hemodynamic
values were similarly calculated as the mean of 30 min of continuous data, which concluded
60 min prior to the time of dialysate collection.

2.6.3. Non-Invasive Predictors of Cerebral Metabolic Distress and Injury

After detecting significant correlations between microdialysis and cerebral hemo-
dynamic parameters in DHCA animals, a post hoc analysis was performed to suggest
thresholds for individual parameters that may indicate neurologic vulnerability during
or following DHCA. Neurologic vulnerability was indicated by either cerebral metabolic
distress, defined as an LPR >40 using a 20 min sampling delay, or neurological injury,
defined as a glycerol concentration >100 µmol/L using a 60 min sampling delay. For this
analysis, measured glycerol concentrations were adjusted to account for <100% recovery of
the true tissue glycerol concentration. The recovery rate is significantly influenced by the
flow rate and catheter length; faster flow rates and smaller membranes reduce recovery.
Based on the use of a 10 mm microdialysis membrane and 1 µL/min flow rate in this
study, an expected recovery rate of 30% has been reported [41]. An unadjusted sampling
threshold of >30 µmol/L would approximate a true tissue glycerol concentration threshold
of >100 µmol/L after adjusting for the recovery rate.

Odds ratios and suggested metabolic distress and neurologic injury thresholds for StO2,
relative THC, and relative CBF were determined based on univariate logistic regression
models. Parameter threshold values corresponded to a predicted probability of 0.5 for the
binary outcomes of LPR >40 or adjusted glycerol >100 µmol/L, respectively.

3. Results
3.1. Summary of Experimental Characteristics

Successful diffuse optical monitoring and cerebral microdialysis (MD) sampling was
achieved in 7 of 10 DHCPB animals, 7 of 10 DHCA animals, and 6 of 10 SACP animals; the
fallout of the 10 remaining animals was due to incidental obstruction of the optical signal
by cutaneous bleeding (n = 9/10) or malfunction of the MD pump (n = 1/10).
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3.2. Longitudinal Changes in Cerebral Physiology

Microdialysis biomarkers and corresponding physiologic parameters are summarized
by group and plotted as a function of the experimental period in Figure 2. Samples
corresponding to the post-rewarming normothermic bypass timepoint were not consistently
collected in all subjects and were excluded from the timepoint-specific analysis (therefore,
this timepoint is not shown in Figure 1).
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Figure 2. Summary of Cerebral Physiologic Parameters at Microdialysis Sampling Timepoints. The
median (bold line) and interquartile range (shaded) within each group are summarized for measured
physiologic parameters at each microdialysis sampling timepoint. Abbreviations: DHCA, deep
hypothermic circulatory arrest; DHCPB, deep hypothermic cardiopulmonary bypass; SACP, selective
antegrade cerebral perfusion; rTHC, relative total hemoglobin concentration; LPR, lactate–pyruvate
ratio; StO2, tissue oxygen saturation; rCBF, relative cerebral blood flow.

As anticipated, corresponding intracranial temperature values approach deep hy-
pothermia in all animal groups and recover towards normothermia during rewarming.
During initial normothermic bypass, significant differences were observed in DHCA ani-
mals for glycerol concentrations and the corresponding intracranial temperature (ICT) and
relative THC values (Table 1). DHCA animals exhibited a small elevation in ICT compared
to DHCPB animals (median = 36.5 vs. 34.2 ◦C) but not SACP animals; DHCA animals ex-
hibited moderately lower relative THC compared to SACP (95.5 vs. 102.9%); and DHCA an-
imals exhibited elevated glycerol concentration compared to SACP (32.3 vs. 13.3 µmol/L).
In samples collected during cooling, the elevation of glycerol in DHCA animals compared
to SACP persisted (25.8 vs. 11.7 µmol/L); no other significant differences were detected.
Variability in the duration and amount of anesthetic exposure and its impact on tissue
metabolism could potentially have resulted in variable concentrations of glycerol in the
brain prior to randomization.

The impact of differing perfusion strategies became evident in cerebral hemodynamics
during deep hypothermia. No significant differences were observed in intracranial tem-
perature, suggesting uniform effects of temperature on microdialysis metabolite sampling
across groups. Significant differences in the DHCA group were found in StO2, relative
THC, relative CBF, and LPR. The DHCA group exhibited significantly lower StO2 ver-
sus both DHCPB and SACP groups; lower relative THC versus both DHCPB and SACP
groups; lower relative CBF versus both DHCPB and SACP groups; and higher LPR versus
the DHCPB group. These group differences demonstrate significantly greater severity



Metabolites 2022, 12, 737 8 of 17

of hypoxic-ischemia in DHCA animals, reflected by both quantitative measurements of
oxygenation and perfusion as well as invasively sampled markers of metabolic distress
(elevated LPR).

Table 1. Comparison of Cerebral Physiologic Parameters at Microdialysis Sampling Timepoints.

Experimental Timepoint Parameter DHCA (n = 7) DHCBP (n = 7) SCP (n = 6)

Normothermic Bypass

ICT, ◦C 36.5 [35.6, 36.6] * 34.2 [30.3, 35.2] * 35.8 [34.6, 36.4]
StO2, % 54.7 [51.9, 58.4] 56.3 [52.7, 57.7] 61.4 [59.5, 63.2]

rTHC, % Baseline 95.5 [89.5, 96.1] † 98.5 [85.7, 100.5] 102.9 [99.2, 106.5] †

rBFI, % Baseline 106.6 [102.8, 133.9] 115.2 [105.0, 160.1] 104.1 [88.8, 125.1]
LPR 21.2 [10.0, 41.8] 13.8 [0.7, 22.0] 11.9 [10.3, 15.3]

Glycerol, µmol/L 32.3 [18.6, 47.6] † 21.8 [17.1, 27.9] 13.3 [11.4, 20.3] †

Cooling

ICT, ◦C 26.4 [24.2, 29.4] 29.2 [25.8, 31.4] 22.6 [21.5, 25.3]
StO2, % 66.1 [63.7, 69.9] 59.5 [57.8, 63.6] 66.8 [61.8, 66.8]

rTHC, % Baseline 101.1 [99.1, 105.5] 101.6 [97.2, 106.7] 105.1 [101.5, 111.5]
rBFI, % Baseline 63.3 [57.2, 66.2] 89.5 [65.6, 96.6] 41.0 [17.9, 70.3]

LPR 25.3 [21.5, 34.1] 17.5 [5.5, 34.2] 17.5 [14.0, 25.4]
Glycerol, µmol/L 25.8 [13.8, 45.0] † 13.8 [12.3, 15.8] 11.7 [10.9, 13.3] †

Deep Hypothermia

ICT, ◦C 19.9 [19.0, 20.8] 19.4 [18.9, 21.1] 20.4 [19.7, 23.3]
StO2, % 36.3 [26.9, 45.2] *,† 66.7 [54.2, 74.3] * 65.5 [58.2, 67.0] †

rTHC, % Baseline 84.2 [72.6, 86.3] *,† 106.8 [87.9, 117.1] * 99.7 [94.7, 109.0] †

rBFI, % Baseline 1.8 [1.3, 8.2] *,† 43.8 [22.6, 70.3] * 23.4 [17.3, 35.4] †

LPR 108.9 [52.7, 172.3] * 7.2 [1.3, 13.5] * 13.9 [8.2, 27.7]
Glycerol, µmol/L 27.4 [18.2, 40.2] 11.3 [8.3, 19.9] 13.8 [11.9, 18.0]

Rewarming

ICT, ◦C 27.9 [25.7, 29.8] 26.8 [22.8, 31.6] 30.0 [27.0, 31.8]
StO2, % 54.3 [48.3, 54.6] *,† 60.7 [56.5, 62.6] * 59.4 [58.3, 61.8] †

rTHC, % Baseline 101.0 [93.5, 103.6] 112.5 [101.4, 120.2] 107.8 [98.8, 118.3]
rBFI, % Baseline 58.0 [43.9, 78.8] 63.8 [40.3, 71.9] 55.2 [45.8, 61.3]

LPR 38.3 [24.0, 59.1] 7.1 [4.7, 22.6] 14.7 [5.2, 21.1]
Glycerol, µmol/L 61.3 [45.8, 78.4] * 17.6 [11.6, 26.2] * 24.1 [22.3, 26.9]

Symbols denote significant differences between DHCA and DHCPB groups (*) or DHCA and SCP groups (†)
determined by adjusted p-value < 0.05 following Bonferroni correction.

During rewarming, significantly lower StO2 persisted in the DHCA group
(median = 54.3%) versus both DHCPB (60.7%) and SACP (59.4%) groups. The DHCA
group also demonstrated significantly elevated glycerol concentration versus the DHCPB
group (61.3 vs. 17.6 µmol/L). No significant differences were detected in other physiologic
parameters at this time point, indicating the resolution of metabolic distress. Thus, follow-
ing return to bypass support, DHCA animals demonstrated recovery of cerebral perfusion
that was comparable to other perfusion strategies that did not entail circulatory arrest.
The presence of elevated glycerol during rewarming but not during deep hypothermia in
DHCA animals suggests a contributing role of ischemia–reperfusion injury or a delay in
either the generation of glycerol or its “washout” into sampled interstitial fluid following
hypoxic-ischemic injury.

No significant differences were observed between DHCPB and SACP groups in any
of the measured parameters at any timepoint. The distinct time course of cerebral hemo-
dynamics and injury expression observed in the DHCA group versus DHCPB and SACP
groups motivated the distinct examination of quantitative relationships.

3.3. Correlation between Cerebral Hemodynamics and Biomarkers of Neurological Injury
3.3.1. Lactate–Pyruvate Ratio (LPR)

Here, we explore potential correlations between non-invasive measures of oxygena-
tion and perfusion and LPR to determine if these non-invasive measures may be used in
a quantitative manner to assess the severity of metabolic distress under operative condi-
tions. Fitted linear mixed-effects models examining the relationship between LPR and



Metabolites 2022, 12, 737 9 of 17

corresponding cerebral hemodynamic parameters, separately assessed for animals that
received continuous deep hypothermic cerebral perfusion (DHCPB and SACP groups, “No
DHCA”) versus animals that underwent circulatory arrest (DHCA), are shown in Figure 3.
To highlight the physiologic relationship of different perfusion strategies, only data ac-
quired during and following deep hypothermia (i.e., following group randomization) were
included in the analysis.
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Figure 3. Correlation between the Cerebral Lactate–Pyruvate Ratio (LPR) and Cerebral Hemodynam-
ics in “No DHCA” and DHCA Groups. Correlation data from individual animals are designated
by a unique symbol within “No DHCA” animals (i.e., animals randomized to DHCPB and SACP
groups) and, separately, within DHCA animals. No significant slope effect was detected in linear
mixed-effects models examining the relationship between log-normalized LPR and StO2, rTHC, or
rCBF data acquired during and following deep hypothermia in the “No DHCA” animals. By contrast,
DHCA animals demonstrated a significant negative slope effect (p < 0.05) in identical models.

In animals that received continuous perfusion to the brain (DHCPB and SACP), neither
StO2 nor rCBF was correlated with LPR. A significant inverse correlation was observed
between rTHC and LPR, indicating that increased blood volume may facilitate oxygen
delivery to tissue in the setting of adequate oxygen delivery. In animals that underwent
DHCA, LPR was significantly inversely correlated with all cerebral hemodynamic param-
eters. Reduced cerebral oxygenation, blood volume, and cerebral blood flow were all
found to increase LPR. Notably, the linear model fit between StO2 and log-normalized LPR
demonstrated strong linearity (R2 = 0.73).

3.3.2. Glycerol

In the setting of neurological injury, elevated glycerol is observed secondary to the
degradation of cell membranes during cell death [37]. Here, we examine the correlation of
non-invasive cerebral hemodynamic parameters with glycerol to determine if diagnostic
injury information could potentially be accessed non-invasively. Fitted linear mixed-effects
models examining the relationship between glycerol concentration and corresponding
cerebral hemodynamic parameters are shown in Figure 4.
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Figure 4. Correlation between Cerebral Glycerol and Cerebral Hemodynamics in “No DHCA” and
DHCA Groups. Correlation data from individual animals are designated by a unique symbol within
“No DHCA” animals (i.e., animals randomized to DHCPB and SACP groups) and, separately, within
DHCA animals. In “No DHCA” animals, a significant negative slope effect was detected in the linear
mixed-effects model examining the relationship between log-normalized glycerol concentration and
StO2, but not with rTHC or rCBF. Examining identical models in DHCA animals, trending (p < 0.01)
or significantly (p < 0.05) positive slope effects were observed between log-normalized glycerol and
all three parameters.

In animals that received continuous deep hypothermic cerebral perfusion (DHCPB
and SACP), glycerol was significantly inversely correlated with StO2 (p = 0.003), but
glycerol did not demonstrate a significant correlation with relative THC or relative CBF.
Secondary analysis (not shown) of the relationship between the change in glycerol from
initial normothermic bypass versus StO2 also demonstrated a highly significant correlation.
The majority of data points reflected a decrease in glycerol concentration from initial
normothermic bypass. Thus, the observed inverse correlation between glycerol and StO2
should be interpreted in the setting of adequate oxygen delivery; in this case, reductions
in glycerol are potentially associated with reduced cerebral oxygen metabolism and not
necessarily a reduction in neurological injury.

In DHCA animals, glycerol was weakly correlated with rTHC and rCBF (0.01 < p < 0.05)
and trended with StO2 (p = 0.056). This relationship was in opposition to our hypothesis
that glycerol, as a surrogate measure of neurological injury, would be elevated following
transient hypoxia (low StO2) and ischemia (low rTHC and low rCBF). However, all models
demonstrated poor linear fits (R2 < 0.2). These poor fits may be a consequence, in part,
of a temporal delay between the presence of hypoxic-ischemic conditions and the related
elevation in glycerol.

Thus, we also looked at the correlation between glycerol and cerebral hemodynamics
using a 60 min delay time. The improved goodness of fit observed in our delay-time sen-
sitivity analysis further supported this additional analysis (see Supplementary Materials).
In contrast to models fit using a 20 min delay time, we observed significant negative cor-
relations between glycerol and StO2 (p = 0.001; R2 = 0.55), rTHC (p = 0.01, R2 = 0.38), and
rCBF (p < 0.001, R2 = 0.73; Figure 5). These results suggest that in DHCA animals, hypoxic-
ischemia-related elevation of glycerol is temporally delayed and follows the elevation of
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LPR. In animals that did not undergo DHCA, no significant correlations were observed
between glycerol and cerebral hemodynamics at this delay time.
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Figure 5. Correlation between Cerebral Glycerol and Cerebral Hemodynamics in DHCA Animals
with a 60 min Delay between Sampling Methods. Correlation data from individual animals are
designated by a unique symbol within DHCA animals (i.e., animals randomized to DHCPB and SACP
groups). When accounting for a 60 min delay between cerebral hemodynamics and microdialysis
sample collection from which glycerol concentrations were analyzed, in DHCA animals, a significant
negative slope effect was detected in the linear mixed-effects model examining the relationship
between log-normalized glycerol concentration and StO2, rTHC, and rCBF. No significant correlations
were observed at this delay time in the “No DHCA” animals.

3.4. Non-Invasive Predictors of Cerebral Metabolic Distress and Injury

Following the demonstration of significant correlations between microdialysis and
cerebral hemodynamic parameters in DHCA animals, a post hoc analysis was performed to
suggest thresholds for individual parameters that may indicate cerebral metabolic distress
(LPR >40) [33] or neurological injury (glycerol >100 µmol/L) [39]. The odds ratio for each
parameter and suggested prediction thresholds are listed in Tables 2 and 3. Suggested
thresholds for StO2 and rTHC are similar between outcomes; a lower rCBF threshold is
suggested for glycerol versus LPR-based outcomes (9.4% vs. 39.0%).

Table 2. Odds Ratios and Thresholds for Cerebral Hemodynamic Prediction of LPR >40.

Parameter Odds Ratio [95% CI] p-Value P(x) = 0.5 Threshold

StO2 (%) 0.86 [0.76, 0.97] 0.010 48.2

rTHC (% Baseline) 0.89 [0.81, 0.98] 0.010 91.0

rCBF (% Baseline) 0.94 [0.90, 0.98] 0.003 39.0

Table 3. Odds Ratios and Thresholds for Cerebral Hemodynamic Prediction of Glycerol >100 µmol.

Parameter Odds Ratio [95% CI] p-Value P(x) = 0.5 Threshold

StO2 (%) 0.91 [0.86, 0.96] <0.001 47.8

rTHC (% Baseline) 0.90 [0.85, 0.95] <0.001 88.0

rCBF (% Baseline) 0.98 [0.97, 1.00] 0.007 9.4

4. Discussion

Non-invasive optical neuromonitoring of cerebral hemodynamics is a promising tool
to detect intraoperative cerebral metabolic distress during deep hypothermic cardiopul-
monary bypass (DHCPB) and circulatory arrest (DHCA). In a high-fidelity large animal
model of DHCA, cerebral tissue oxygen saturation (StO2), relative blood volume, and rela-
tive CBF were all negatively correlated with invasive cerebral microdialysis (MD) sampling
of the lactate–pyruvate ratio (LPR) and glycerol concentration. However, hypoxic-ischemic
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elevation of LPR occurred more acutely (20 min delay time) than the elevation of glyc-
erol (60 min delay time). Individual cerebral hemodynamic parameter thresholds that
may indicate cerebral metabolic distress and neurological injury are derived and reported.
These thresholds provide preliminary guidance for the interpretation of cerebral hemody-
namic parameters, aiming to detect neurological vulnerability, as well as intraoperative
management guidance to mitigate hypoxic-ischemic injury.

Hypoxic-ischemic injury is known to cause cerebral metabolic distress due to in-
adequate delivery of metabolic substrates for energy production [42]. Reduced oxygen
availability leads to increased anaerobic metabolism of pyruvate into lactate versus aerobic
metabolism of pyruvate via oxidative phosphorylation. Thus, elevated LPR is consistently
observed in the setting of hypoxic-ischemia [31] and is a specific biomarker of reduced
oxygen delivery. Following persistent depletion of metabolic substrates, breakdown of
ATP-dependent, homeostasis-maintaining membrane ion channels results in a cytotoxic
increase in intracellular calcium (Ca2+) [42]. This, in turn, activates phospholipases and
proteases that degrade membrane glycerophospholipids, leading to apoptosis/cell death.
Glycerophospholipids are the predominant component of mammalian cell membranes [43]
and are estimated to make up 4–5% of the total wet weight of the brain [44]. These charac-
teristics likely underlie the utility of glycerol as a quantitative biomarker of neurological
injury severity. Elevated cerebral LPR and glycerol have been observed in animal models
of hypothermic CPB with SACP and DHCA [8,11,45–48]. In our work, we further examine
these types of quantitative relationships with clinically translatable, non-invasive optical
monitoring metrics of cerebral hemodynamics.

Initially, we selected a delay time of 20 min between measured cerebral hemodynamic
parameters and microdialysis sample collection. A minimum delay time of 5 min is ex-
pected based on our microdialysis sampling characteristics [49]. However, this does not
account for chemical reaction times leading to the production of measured metabolites or
delays in their extracellular expression, via either active or passive transport, and diffusion
to the sampling catheter (i.e., “washout” time) that enables detection by microdialysis.
The rate of diffusion in the extracellular space is dependent on several biomechanical and
electrochemical properties of the brain that have been shown to be significantly impacted
by hypoxic-ischemia [50]. Due to the lack of sensitivity to the intracellular environment,
we were unable to differentially characterize contributions to this delay using monitoring
modalities in the present study. Thus, we empirically selected a 20 min delay time based on
evaluating the optimal significance of the correlation and goodness of fit of linear models
(see Supplementary Materials). Using this delay time, we detected the expected inverse
relationship between LPR and all cerebral hemodynamics in DHCA animals. We did
not observe a correlation in non-DHCA animals for measures of oxygenation (StO2) or
perfusion (rCBF). Note that, among non-DHCA animals, only 4/68 evaluable samples
exhibited metabolic distress (LPR >40); this lack of injury likely precluded the detection of
the expected association. Given that LPR is highly sensitive to deficits in oxygen delivery,
this provides evidence that non-invasive optical neuromonitoring is able to quantitatively
assess the severity of hypoxic-ischemia during DHCA. Application of the suggested pa-
rameter thresholds in the intraoperative setting could assist in the clinical optimization
of DHCA management by providing real-time assessment of hypoxic-ischemic exposure.
Clinical interventions, including temperature management and intermittent perfusion,
could be used to either decrease metabolic demand or briefly replenish oxygen content.

We also examined the relationship between glycerol and cerebral hemodynamics
using a 20 min delay time. With this delay, we uncovered an inverse relationship between
glycerol and StO2, but not rTHC or rCBF, in animals with continuous deep hypothermic
support. Glycerol levels were relatively normal in these animals, thereby suggesting that
the observed relationship may simply reflect intrinsic fluctuations in glycerol concentration
associated with glycolytic metabolism [39]. In DHCA animals, we observed a positive
correlation between glycerol concentration and all cerebral hemodynamic parameters. This
relationship was unexpected; we had hypothesized that decreased oxygenation and perfu-
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sion that lead to hypoxic-ischemic injury would be negatively correlated with neurological
injury, as reflected by the elevation of glycerol. Thus, we suspected that these initial re-
sults were a function of the timing of glycerol sampling relative to cerebral hemodynamic
measurements of hypoxic-ischemic injury. While glycerol elevation following transient
ischemic injury in mice has been detected 15–30 min after injury, it continues to rise until
stabilization after 1–2 h [51]. In contrast, LPR was observed to rise within 15 min, peak
within 30min post-injury, and return to baseline by 60 min. A 30 min offset between the
peak of LPR and glycerol was also observed in our dataset and in prior swine models
of DHCA [47,48].

To further explore the delay time between LPR and glycerol in our data, we per-
formed a sensitivity analysis examining the correlation between LPR and glycerol in DHCA
animals at different delay times. Notably, no correlation was observed when LPR and
glycerol were compared within the same microdialysis sample (no delay time), but a cor-
relation was observed using a 30 or 60 min delay between LPR and glycerol values (see
Supplementary Materials). To explore this issue more deeply, we conducted an additional
analysis examining the correlation between glycerol and cerebral hemodynamics using a
longer delay time of 60min between cerebral hemodynamics and the microdialysis sam-
pling time. For the 60 min delay time, we observed the hypothesized negative correlation
between glycerol and all cerebral hemodynamic parameters. In light of this observation,
the presence of a positive correlation of oxygenation and perfusion with glycerol at 20 min
may reflect the additional contribution of secondary ischemia–reperfusion injury [52] fol-
lowing primary hypoxic-ischemic insult. This secondary injury is thought to arise from the
generation of excessive reactive oxygen species during reperfusion due to dysregulation
of the mitochondrial respiratory chain and loss of mitochondrial membrane integrity [38].
Taken together, the results and additional temporal analysis provide valuable insights into
the timing and mechanisms of neurological injury following hypoxic-ischemic injury. There
is evidence of a significant time delay (30–60 min) between hypoxic-ischemic insult and
neurological injury; however, injury associated with ischemia–reperfusion may present
more acutely (<20 min). Thus, non-invasive quantification of cerebral hemodynamics may
also provide valuable diagnostic information regarding the management of reperfusion
following DHCA. Further examination of the impact of modulating the bypass flow rate
and oxygen content during reperfusion on neurological outcomes is warranted.

Limitations

This study has several limitations. Intracranial pressure (ICP) is an important variable
that was not explicitly measured in this study and may impact measured cerebral hemody-
namics. For example, during rapid rewarming, ICP could increase, resulting in a decrease
in cerebral perfusion pressure and cerebral blood flow. Future work should consider the
explicit measurement of ICP.

The timing and recovery of extracellular concentrations of metabolites by microdialysis
are known to vary based on sampling characteristics and catheter placement within the
tissue. For the 10 mm catheter and 1 µL/min infusion rate used, a 30% solute concentration
recovery is anticipated [41]. A correction factor was used to approximate the true glycerol
concentration for the estimation of cerebral hemodynamic thresholds. This correction and
other physiologic factors that impact baseline concentrations and recovery should be taken
into consideration when comparing our reported values to the literature. The use of similar
operative anesthesia in humans in Reinstrup et al., 2000 (fentanyl, isoflurane, and propofol;
used in this study: fentanyl, isoflurane, and dexmedetomidine) resulted in reduced glycerol
concentrations (mean [SD] = 28 [16] µmol/L) compared to samples acquired when awake
(42 [29] µmol/L) but did not affect LPR (22 [6] vs. 21 [6]) [39]. Notably, these values were
acquired using identical microdialysis sampling characteristics and resulted in comparable
values to the baseline values reported in the present neonatal swine cohort.

Regional variability in brain metabolism is well-documented and is another potential
source of uncertainty in our results; the cortex consumes more than twice as much glucose
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as white matter [53]. In the immature brain, myelinating oligodendrocytes in white matter
are known to be particularly vulnerable to inflammation and hypoxic-ischemic insults [4].
In this study, precise catheter location was not confirmed by imaging following insertion
but was consistently placed at a fixed depth into the brain parenchyma. Variability in
catheter location may have influenced baseline concentrations and the relationship between
metabolic distress and cellular injury based on the relative contribution of the cortex and
white matter to the sampled interstitial fluid. Furthermore, it was not possible to perform
invasive microdialysis sampling co-localized with non-invasive optical neuromonitoring.
Thus, additional variability in our data is introduced by the assumption that both modalities
are separately sampling the same global changes within the brain. Future studies with
multiple (e.g., left and right hemispheres, frontal and occipital) optical and microdialysis
sampling locations are necessary to verify these assumptions.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.com/
article/10.3390/metabo12080737/s1.
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