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ABSTRACT

DEPLETION-INDUCED “MAGNETIC” PHENOMENA IN

QUASI-TWO-DIMENSIONAL COLLOIDAL SUSPENSIONS

Analisa Hill

Arjun G. Yodh

This thesis investigates the influence of depletion-driven attractive interactions in

quasi-two-dimensional buckled colloidal monolayers on a triangular lattice. Without

depletion, such that the interparticle interactions are hard-sphere-like, this experi-

mental system is known to exhibit behaviors akin to a geometrically frustrated Ising

antiferromagnet. The present research explores the effects that arise when a short-

range attractive interaction (depletion attraction) between particles is introduced. We

demonstrate that the added depletion attraction can influence both the magnitude

and the sign of the Ising spin coupling constant. As a result, the nearest neighbor

Ising “spin” interactions can be characterized as antiferromagnetic, paramagnetic, or

ferromagnetic. We compute the effective Ising nearest-neighbor coupling (J/kBT ) us-

ing a simple theoretical model; the model shows that a competition between entropic

effects can modify the sign of the coupling constant from negative to positive and

passing through zero. In experiments, the depletion interactions are induced by sur-

factant micelles comprised of hexaethylene glycol monododecyl ether (C12E6); these

rod-like micelles change length with increasing temperature and offer means to tune

the depletion attraction in-situ by utilizing temperature-tunable shape anisotropy.

The experiments demonstrate the crossover behavior from Ising antiferromagnetic to

paramagnetic in the buckled colloidal suspension as a function of depletion attraction.
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Additionally, spin-flip temporal autocorrelation functions are measured. The corre-

lation functions exhibit both exponential and glassy dynamics. The glassy dynamics

are driven by different underlying mechanisms and are observed in the negative and

positive coupling-constant regimes. In total, this thesis introduces novel colloidal

matter with complex dynamics and “magnetic” features that are rarely observed in

traditional atomic systems.

vii



TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Colloids, Colloidal Hard Spheres, and Crystals . . . . . . . . . . . . . 4

1.2 Brief Background on Particle Interactions and Dynamics in Colloidal

Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Geometric Frustration on a Triangular Lattice with Antiferromagnetic

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Spins on a Triangular Lattice with Ferromagnetic Coupling . . . . . . 20

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 2 : Experimental Methods . . . . . . . . . . . . . . . . . . . . . 24

2.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Suspension Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Glass Treatment and Cleaning Protocols . . . . . . . . . . . . . . . . 28

2.4 Wedge Cell Construction . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Image Acquisition, Processing, and Particle Tracking . . . . . . . . . 30

2.6 Up and Down “Spin” Assignments . . . . . . . . . . . . . . . . . . . 35

2.7 Measurements of Sample Geometric Parameters . . . . . . . . . . . . 37

2.8 Temperature Variation for Sample Preparation . . . . . . . . . . . . . 42

2.9 Depletion Interactions in More Detail . . . . . . . . . . . . . . . . . 45

viii



2.10 Pair Potential Measurements and Methods . . . . . . . . . . . . . . 51

CHAPTER 3 : Theoretical Framework and Modeling . . . . . . . . . . . . . 59

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 The Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Number of Similar Bonds: A Useful Way to Characterize Local Anti-

ferromagnetic, Paramagnetic, and Ferromagnetic Order . . . . . . . . 65

3.4 Theoretical Model for the Colloidal Suspensions . . . . . . . . . . . . 69

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 4 : Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Static Structural Properties and Model Comparison . . . . . . . . . 95

4.2 Static Structural Observations and Morphology of Experimental Data 104

4.3 Dynamics and Structural Arrest . . . . . . . . . . . . . . . . . . . . 108

CHAPTER 5 : Conclusions, Ongoing, and Future Work . . . . . . . . . . . 112

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Ongoing and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 113

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



LIST OF ILLUSTRATIONS

FIGURE 1.1 Examples of colloids . . . . . . . . . . . . . . . . . . . . . . 2
FIGURE 1.2 Partial survey of phase transition studies of colloidal crystals 3
FIGURE 1.3 Example of colloids with various shapes, sizes, and patterns 5
FIGURE 1.4 Hard sphere phase diagram . . . . . . . . . . . . . . . . . . 7
FIGURE 1.5 Common interactions in colloidal suspensions . . . . . . . . 11
FIGURE 1.6 Depletion between two colloidal spheres . . . . . . . . . . . 15
FIGURE 1.7 Spins on different geometrical plaquettes . . . . . . . . . . . 19
FIGURE 1.8 Triangular lattice of spins . . . . . . . . . . . . . . . . . . . 19
FIGURE 1.9 Triangular lattice of spins in the PM and FM case . . . . . 21

FIGURE 2.1 Step 9 of sample preparation . . . . . . . . . . . . . . . . . 28
FIGURE 2.2 Wedge Cell Construction . . . . . . . . . . . . . . . . . . . 29
FIGURE 2.3 Raw experimental image . . . . . . . . . . . . . . . . . . . . 31
FIGURE 2.4 Post-processed raw image . . . . . . . . . . . . . . . . . . . 33
FIGURE 2.5 Particle tracking of post-processed image . . . . . . . . . . 34
FIGURE 2.6 Waveform discretization . . . . . . . . . . . . . . . . . . . . 36
FIGURE 2.7 Particle tracking reconstruction . . . . . . . . . . . . . . . . 37
FIGURE 2.8 Focal plane z-scan . . . . . . . . . . . . . . . . . . . . . . . 39
FIGURE 2.9 Median intensity I(z) . . . . . . . . . . . . . . . . . . . . . 40
FIGURE 2.10 Wall-to-wall schematic . . . . . . . . . . . . . . . . . . . . . 41
FIGURE 2.11 Image of desiccated monolayer . . . . . . . . . . . . . . . . 42
FIGURE 2.12 L/D measurements . . . . . . . . . . . . . . . . . . . . . . 43
FIGURE 2.13 Experiment schematic . . . . . . . . . . . . . . . . . . . . . 44
FIGURE 2.14 Depletion in a suspension of spherical depletants . . . . . . 46
FIGURE 2.15 Schematic of particle-wall depletion interaction . . . . . . . 48
FIGURE 2.16 Depletion in a suspension of rod depletants . . . . . . . . . 49
FIGURE 2.17 Dilute colloidal suspension . . . . . . . . . . . . . . . . . . 52
FIGURE 2.18 Mirrored lone particles . . . . . . . . . . . . . . . . . . . . . 53
FIGURE 2.19 g(r) corrections . . . . . . . . . . . . . . . . . . . . . . . . . 55
FIGURE 2.20 Fitted pair-potentials . . . . . . . . . . . . . . . . . . . . . 58

FIGURE 3.1 Ising model free energy . . . . . . . . . . . . . . . . . . . . 64
FIGURE 3.2 Ns vs. configurations . . . . . . . . . . . . . . . . . . . . . . 66
FIGURE 3.3 Wannier’s solution to the Ising model . . . . . . . . . . . . 67

x



FIGURE 3.4 Variance of Ns . . . . . . . . . . . . . . . . . . . . . . . . . 70
FIGURE 3.5 Quasi-1D model schematic . . . . . . . . . . . . . . . . . . 74
FIGURE 3.6 Depletion rod schematic . . . . . . . . . . . . . . . . . . . . 78
FIGURE 3.7 Quasi-1D area ratios . . . . . . . . . . . . . . . . . . . . . . 79
FIGURE 3.8 Up-down areas of the central particle . . . . . . . . . . . . . 81
FIGURE 3.9 Integral ratios of different neighbor configurations . . . . . 82
FIGURE 3.10 Neighbor configurations for quasi-2D integrals . . . . . . . . 84
FIGURE 3.11 Examples of configurations in realistic quasi-2D calculation 86
FIGURE 3.12 Quasi-2D phase diagrams . . . . . . . . . . . . . . . . . . . 88
FIGURE 3.13 Quasi-1D area ratios with wall interaction . . . . . . . . . . 90
FIGURE 3.14 Schematic of numerical integration bounds . . . . . . . . . . 92
FIGURE 3.15 Numerical convergence estimation . . . . . . . . . . . . . . 93

FIGURE 4.1 Experimental images at H/D ∼ 1.23 . . . . . . . . . . . . . 96
FIGURE 4.2 ⟨Ns⟩ vs. βUmin vs. βJ for H/D ∼ 1.23 . . . . . . . . . . . . 98
FIGURE 4.3 Local bond order parameter ψ6 schematic . . . . . . . . . . 100
FIGURE 4.4 ψ6 with Voronoi tessellation for different H/D . . . . . . . . 101
FIGURE 4.5 Experimental images H/D ∼ 1.29 . . . . . . . . . . . . . . 102
FIGURE 4.6 ⟨Ns⟩ vs. βUmin vs. βJ for H/D ∼ 1.29 . . . . . . . . . . . . 103
FIGURE 4.7 Experimental images for H/D ∼ 1.55 . . . . . . . . . . . . 104
FIGURE 4.8 ⟨Ns⟩ vs. βUmin vs. βJ for H/D ∼ 1.55 . . . . . . . . . . . . 105
FIGURE 4.9 var(Ns) vs. ⟨Ns⟩ . . . . . . . . . . . . . . . . . . . . . . . . 106
FIGURE 4.10 Spin autocorrelation for H/D ∼ 1.23 . . . . . . . . . . . . . 109
FIGURE 4.11 Spin autocorrelation for H/D ∼ 1.29 and H/D ∼ 1.55 . . . 111

FIGURE 5.1 Eight state configurations . . . . . . . . . . . . . . . . . . . 123
FIGURE 5.2 Illustration of lag time τ . . . . . . . . . . . . . . . . . . . . 124
FIGURE 5.3 Equilibrium eigenvectors ψ(1) for (a) 21 ◦C and (b) 31 ◦C. . 125
FIGURE 5.4 Selected eigenvectors and their relaxation timescales . . . . 127

xi



CHAPTER 1

Introduction

Colloids are common materials in our daily lives (see Figure 1.1). They are used

in formulating food products, cosmetics, and medicines, and they also arise naturally.

Traditional colloidal systems are composed of particles suspended in a liquid, the

simplest of which are well characterized and are often used as model systems, for

example, to understand the behaviors observed in atomic systems, with the particles

taking on the role of atoms. Thus, as a result of their potential to mimic more

complicated systems in a controllable way, experiments with colloids have furthered

scientific understanding of condensed materials (broadly defined). They also serve as

a starting point to elucidate behaviors unique to soft materials. The model paradigm

works, in part, because colloids are “thermal” so statistical mechanics can be applied

to understand their behavior. To date, significant contributions to the fields of solid

state physics, complex fluid physics, glass physics, and biological physics have been

made via investigation of colloidal model systems [13, 19, 35, 57, 59, 90, 98, 129, 130,

172, 179].

As noted above, one unique characteristic of colloids is their ability to model

atomic systems, thereby permitting the complementary study of phases, phase tran-

sitions (see Figure 1.2), kinetic pathways, rearrangement dynamics, defects, and self-

assembly. These phenomena, which can be associated with both equilibrium or non-

equilibrium processes, are often challenging to understand in “traditional” materials

because of the inability to easily track the motions of individual constituents at the

smaller length scales (i.e., atoms, molecules, macromolecules, proteins, etc.), and sim-

ilarly, the inability to probe constituent dynamics at short timescales. By contrast,
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Figure 1.1: Examples of colloids (and their size scales) that occur in nature, or have
been synthesized in medicine, pharmaceuticals, food, and cosmetics. Figure adapted
from Yan et al. 2022 [171].

individual colloidal particles can be conveniently tracked using optical microscopy,

because of their relatively large size (∼ 0.1µm − 10µm), their relatively slow diffu-

sion time (∼ 1 s), and their (often accessible) energy scales (∼ kBT ). Additionally,

it is possible to vary the strength and character of interparticle interactions amongst

colloidal particles by various means, e.g., particle synthesis, manipulation of charge

in suspension, manipulation of entropic interactions in suspension, manipulation of

particle size and shape, etc. In practice, particle interactions can have entropic,

electrostatic, and magnetic features, and/or mixtures thereof. Importantly, these in-

teractions can be controlled. In this way, model colloids provide an opportunity (a

route) to discover new physics.

In this dissertation research, we created a model colloidal system in quasi-2d

(quasi-two dimensions). The system is comprised of buckled colloidal particles ar-

ranged on a triangular lattice. Importantly, the character and strength of the particle-

particle and particle-wall interactions are controlled using the well-known entropic

2



Figure 1.2: Phase transition studies using colloidal crystals. This figure was acquired
from Li et al. 2016 [90].

depletion effect [7, 163]. Without depletion, the system is hard-sphere-like and is

an excellent model for the frustrated Ising antiferromagnet [59]. Ising systems, in

general, depend strongly on the Ising nearest-neighbor coupling, J/kBT (expressed

in thermal energy units). By introducing the short-range, attractive depletion inter-

actions into this system, we explore how depletion can influence the Ising coupling,

which in turn dramatically affects the phase behavior of the buckled colloidal ensem-

ble. Due to depletion, a competition between two entropic effects can modulate the

Ising coupling constant to change from negative to positive, passing through zero;

in this process, we create colloidal analogs of the antiferromagnetic, paramagnetic,

and ferromagnetic phases of Ising spins. As a result, this work creates a qualitatively

new model colloidal system that relates to traditional magnetic materials. It thus
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adds to the small collection of model systems that can be used to study phase transi-

tions, dynamical crossovers, and collective phenomena in condensed matter (broadly

defined).

1.1. Colloids, Colloidal Hard Spheres, and Crystals

1.1.1. Colloids

Colloids are a class of matter in which particles, typically either solid particles or

fluid particles, are suspended in a background medium, typically a fluid. The sus-

pended particles are usually not visible to the naked eye. One example of a colloid is

milk, which consists of an emulsion of fat droplets suspended in water; in this suspen-

sion, liquid particles are suspended in a liquid background medium. As noted above,

colloids are used in many products, and often, they are used to stabilize mixtures of

unstable substances. Examples of colloids in industry are mayonnaise (emulsions),

shampoos (surfactant solutions), and paints (polymer latex dispersions). Colloidal

suspensions of silver particles are used as antibacterial agents [8, 84, 117], and col-

loidal clay is used in water filters [16, 81]. The “traditional” colloidal suspensions,

and those most commonly discussed in this thesis, are solid particles suspended in a

fluid. The particles can range in diameter from nanometers to several microns, and

the particles can have a wide variety of shapes, including spheres [107, 132, 133, 155],

rods [80, 141, 157], ellipsoids [63], shells [158], dumbbells [68, 131], and other shapes

[62, 178] as shown in Figure 1.3.

1.1.2. Colloidal Hard Spheres

The colloidal hard-sphere suspensions are sometimes used to understand and il-

lustrate fundamental concepts in statistical mechanics and as a starting point to

elucidate more complex systems. The hard sphere is impenetrable; colloidal hard-
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Figure 1.3: Examples of colloids with a wide variety of shapes, sizes, and patterns.
Useful shapes include branched, spheres, faceted polyhedra, rods, and ellipsoids shown
in the first four rows. The last row shows examples of patterned colloids. Patterned
colloids can have diverse structures of stripes, spots, and patches, among other things,
on their surface. This figure was adapted from Glotzer et al. 2007 [51].

sphere particles cannot overlap in space. In experiments, common materials of choice

for hard spheres are silica and polymers such as Poly(methyl methacrylate) (PMMA)

or polystyrene. The hard-sphere pairwise interaction between two identical colloidal

particles is

U(r) =


∞ if r < D

0 if r ≥ D

, (1.1)
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where r is the center-to-center separation between two particles (the interparticle

separation), and D is the colloidal particle diameter. Different particle shapes and

interactions (and temperature) affect the entropy, S, and internal energy, U , of the

system, which in turn affects its free energy, F = U − TS. The phases that form

minimize system free energy. For colloidal hard spheres, changes in internal energy

are unimportant for the free energy (since the particles have zero interaction energy

when they are not touching one another), therefore, the entropy associated with the

particle free volume controls the phase behavior of a hard-sphere colloidal system.

Only one parameter can be tuned to change the entropy of the monodisperse hard

sphere suspension, and this parameter is the particle volume fraction,

ϕ =
4

3
πR3N

V
; (1.2)

here R is the colloidal particle radius, N is the total number of particles in the

occupied volume, and V is the volume. By tuning ϕ, different phases and metastable

states can be made, as shown in Figure 1.4. In these studies, in a sense, ϕ behaves

like the inverse temperature in the atomic systems. For the hard sphere-like systems,

there has been a lot of interesting work done to study state changes in bulk colloidal

samples, and in colloidal samples confined in thin films, e.g., crystal-crystal [111, 173],

crystal-liquid [5, 6, 29, 42, 48, 71, 100, 166], crystal-gas [42, 137], and crystal-glass

[135].

The hard sphere equilibrium and metastable phases have been characterized and

mapped out over the years by many scientific works; some noteworthy works are:

Wood and Jacobson [169], Alder and Wainright [4], Hoover and Ree [64], Hastings [61],

Lindsay and Chaikin [93], Murray and Van Winkle [104], and Pusey and van Megan

[125]. A summary of these states is given in Figure 1.4a,b. There are regions (see
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(a)

(b)

Figure 1.4: (a) Hard sphere phase diagram in terms of pressure (P) vs. volume
fraction (ϕ). Figure adapted from Rintoul and Torquato 1998 [127]. (b) Hard sphere
equilibrium and metastable phases for the monodisperse colloidal suspension as a
function of packing fraction ϕ. Image adapted from Li et al. 2016 [90].

Figure 1.4a) in the phase diagram that exhibit a liquid phase (ϕ < 0.49) and liquid-

crystal coexistence (0.49 < ϕ < 0.55). The dotted lines indicate crystalline phases

of random closed packing (ϕrcp = 0.64) and face-centered packing (ϕfcc = 0.74).

Additionally, a metastable branch can be achieved if the liquid phase can bypass the

transition to the crystalline phase. If that occurs, the system falls into the metastable

branch, which consists of supercooled liquid and glass regimes.
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1.2. Brief Background on Particle Interactions and Dynamics

in Colloidal Suspensions

Interactions and forces between constituent colloidal particles significantly affect

the macroscopic physical properties of colloidal suspensions. This section provides a

brief overview of the forces between colloidal particles and their simple dynamics.

1.2.1. Brownian Motion

When viewing an isolated colloidal particle under a microscope, one can readily see

that it moves randomly. This random motion is called Brownian motion. It is due to

random collisions between water molecules and the colloidal particle. The effect was

first noticed by Robert Brown in 1827 [17], and it was explained nearly eighty years

later by Albert Einstein [38]. A few years later, Jean Perrin published experimental

evidence for Einstein’s theory of Brownian motion using a model colloidal system;

this work solidified understanding of this problem [112].

Diffusion is a natural consequence of the particle’s Brownian motion. The motion

of the particle is described as a random walk, where the average mean displacement

of the particle is zero, but the mean-squared displacement is non-zero. The average

mean-squared displacement defined in the sample (in two dimensions) is:

⟨∆2(τ)⟩ = 1

N

N∑
i

(xi(t+ τ)− xi(t))
2 + (yi(t+ τ)− yi(t))

2, (1.3)

where N is the total number of particles, xi(t) and yi(t) are the i-th particle coor-

dinates at time t and τ is the lag time (interval) between displacement. Equation

1.3 can be solved and reduces to ⟨∆2(τ)⟩ = 4Dτ [44, 69]. For particles in a fluid,

the diffusion coefficient, D, can be derived (for example, from the Langevin equation
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[38, 39, 162]), which gives:

D = kBT/ζ. (1.4)

The friction coefficient ζ depends on the shape of the particle, and for spheres, it is:

ζ = 6πηR, (1.5)

where R is the particle radius and η is the fluid viscosity. Therefore, the diffusion

coefficient is:

D =
kBT

6πηR
. (1.6)

This result is also known as the Stokes-Einstein relationship.

Sometimes particle sedimentation is important in colloid experiments. (In this

sense, these systems can be different from atoms!) Colloidal particle motion in solu-

tion is considered purely Brownian and thermal if the sedimentation can be ignored

(as in microgravity or density-matched suspensions) compared to thermal motion.

The sedimentation length is:

ls =
kBT

mbg
. (1.7)

Here kB is the Boltzmann constant, T is the temperature, mb is the buoyant mass of

the particle, and g is gravity. For a colloidal particle that is spherical and with radius

R, the buoyant mass is mb = (4/3)π∆ρR3; ∆ρ is the density difference between the

colloidal particle and the solution.

1.2.2. Van der Waals Interaction

We next briefly describe various mechanisms that influence particle interactions in

suspension. One interaction that arises amongst colloidal particles is the attractive
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Van der Waals forces. The Van der Waals forces are attractive. Ultimately, they

arise from charge fluctuations of the interacting constituents. For example, for two

molecules, the electron clouds fluctuate spatiotemporally, which drives the attraction.

Colloidal particles are composed of a large density of atoms, which collectively fluc-

tuate spatiotemporally to generate the Van der Waals forces [27, 56, 86]. This effect

generally becomes significant at a very short range, i.e., when the particle surfaces are

within several nanometers. The force is so strong that other stabilization methods

are needed to prevent the particles from getting close to one another, which leads

to irreversible aggregation. Without these stabilization mechanisms, such as charge

or polymer-brush particle surface stabilization, the particles will stick together. The

dielectric properties of the colloidal particles and the suspended medium determine

the strength of the Van der Waals interaction. For two colloidal spheres, we give an

approximate expression below for the Van der Waals interaction potential at short

range:

UV DW (h) = −A
6

[
2R2

h2 + 4Rh
+

2R2

h2 + 4Rh+R2
+ ln

(
h2 + 4Rh

h2 + 4Rh+R2

)]
. (1.8)

Here R is the radius of the colloidal spheres, A is the Hamaker constant, and h is the

shortest surface-to-surface distance between colloidal spheres [56, 86, 91]. Figure 1.5

schematically shows the functional form of the Van der Waals attraction. The Van der

Waals attraction is a strong short-ranged interaction when the interparticle separation

is small; UV DW (h) ∼ −AR/h [56, 86]. As alluded to above, when considering colloidal

stabilization, some repulsion is needed to prevent colloidal particles from flocculating

irreversibly due to Van der Waals attractions. In many colloidal experiments, the

surfaces of the particles are charged by coating them with molecules that ionize in

water; the counter-ions, and often added background salts (e.g., NaCl), spread out in
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the water and form a plasma. The charges on the particles and the background ions

in solution effectively create an electrostatic repulsive interaction between particles

which adds to the Van der Waals interaction potential to prevent aggregation. This

stabilization effect and resultant potential will be discussed in subsections 1.2.3 and

1.2.4.

I

II

III

Double layer repulsion

Van der Waals attraction

DLVO

Figure 1.5: Summary of common interactions in charged colloidal suspensions. I.
Double layer repulsion, II. Van der Waals, III. DLVO Interaction. Adapted from
Lekkerkerker et. al. 2011 [86].

1.2.3. Double Layer Interaction

Electrostatic interactions, such as we have briefly described above and which we

distinguish from Van der Waals interactions of the last subsection, play a vital role

in the stability of suspended particles in food colloids, pharmaceuticals, and colloidal

contaminants in wastewater. These interactions depend on the surface charge of the
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particles [14, 30, 152]. When the charged particle is placed in water (or another polar

solvent) with the counter-ions (and also, sometimes with added ions due to salt), a

plasma of ions is created in the solvent, which can (and will) move to redistribute

around the particle spatially. A greater fraction of ions (counter ions) with a charge

opposite to that on the particle surface will move near the colloid surface, and their

density will decrease approximately exponentially from the particle surface. Free

ions (co-ions) with a charge similar to that on the particle surface will have a lower

concentration near the particle surface. The term double layer refers to the first layer,

i.e. the charges distributed on the particle surface, plus the second diffuse layer that

contains both co-ions and counter ions at concentrations that ultimately evolve to

the background values in the solution far from the particle. Effectively, the charged

particle is “dressed” by the counter ions in solution.

When two like-charged “dressed” colloidal particles move close to one another,

their double layers overlap (the diffuse layers overlap in solution), and a repulsive

pair potential emerges. The repulsion arises because of the charge interactions in

the double layer. This effect is often called the screened Coulomb repulsion. The

screening length (double layer thickness) depends on the concentration of ions in the

bulk solution. This length scale is also known as the Debye screening length and is:

λD =

√
1

8πλBNs

. (1.9)

Here Ns is the number density of salt in the solution. Another important length scale

is called the Bjerrum length. It is:

λB =
e2

4πϵ0ϵrkBT
. (1.10)
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The Bjerrum length is the distance between two elementary charges at which their

interaction equals kBT . Here e is the electron charge, ϵr is the dielectric constant

in the solvent, ϵ0 is the vacuum permittivity, kB is the Boltzmann constant, and T

is the temperature. In water and at room temperature, the Debye length is λD =

0.304/
√
I(M), where I(M) is the background solvent ionic concentration in mol/L

[66, 86]. (e.g., an I(M) of 2mM, 5 mM, 15 mM of NaCl has a Debye length of

approximately 7, 4, 2 nm, respectively). For particles at short range (as above), the

double layer potential is approximately:

U(h) =

(
8(2πλDλB|σc

e
|)2

1 + (2πλDλB|σc

e
|)2

)
R

λB
exp (−h/λD). (1.11)

Here σc is the surface charge density on the colloidal particles [86, 160]. Figure 1.5

shows a schematic of the functional form of the double layer repulsion.

1.2.4. DLVO Interaction

The Derjaguin-Landau-Verway-Overbeek interaction is the sum of these interac-

tions: UDLV O = UV DW + UDL. Essentially, the repulsion from the repulsive double-

layer counteracts the Van der Waals attraction, and (if all the parameters are op-

timized) the DLVO potential will have an energy barrier that prevents aggregation.

The result is schematically shown in Figure 1.5. The DLVO potential depends on

particle size, ionic concentration, and the Van der Waals interaction. When salt con-

centration is low, repulsion is dominant, providing stability. Too much salt, however,

can lower the barrier and create conditions wherein irreversible flocculation occurs

because the particles pass over the barrier into the deep Van der Waals attraction

minimum.

Notice, while this resultant interparticle interaction is repulsive at short range (if
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the Debye screening length is short), the interaction is not truly that of a hard-sphere.

However, in many situations, the particle diameter is much larger than the screening

length, and the hard-sphere model is a good approximation for the potential. For

example, in our experimental system, we utilize polystyrene spheres that are 1µm.

2 mM of NaCl was added to the solution creating a Debye screening length is 7 nm,

which is much smaller than the size of the particle. This thesis will employ polystyrene

spheres in a solvent with salt. We will create conditions wherein the particles behave

like hard spheres in the absence of other additives like depletants (see below).

1.2.5. Depletion Interactions

This subsection provides a brief overview of the depletion effect. More details

will be given in Chapter 2. Attractive interactions between colloidal particles can

be induced by adding small non-adsorbing macro-molecules or very small particles.

These small added constituents are known as depletants; their presence creates short-

range attraction between the large particles [7, 163].

Generally, the added depletants are much smaller in size than the colloidal particles

(e.g., in our samples, 19 nm compared to 1µm) but are much bigger than the size

of the solvent molecules. Over the years, added depletants have proven valuable for

controlling colloidal suspension stability [18, 28, 36, 41, 67, 77, 92, 106, 126, 140, 154,

159], for directing self-assembly [9, 10, 11, 37, 49, 73, 79, 99, 128, 132, 164, 174, 176,

177], and for controlling phase behavior [1, 2, 43, 65, 74, 78, 83, 102, 114, 115, 119,

136, 137, 144, 147, 153].

Depletants can come in various shapes, but spherical depletants (small spheres)

provide the most straightforward introduction to understanding the depletion phe-

nomena. We will briefly explain the effect of using large and small spheres in suspen-

sion. We will posit that both the large and small spheres behave like hard spheres
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(a) (b)

Figure 1.6: Depletion between two colloidal spheres of diameter D in a suspension
of spherical depletants of diameter d. (a) Depletant (red spheres) centers cannot
move past the purple region (excluded volume). (b) At r < D + d, the excluded
volumes overlap (Voverlap), and depletant entropy (the depletant free volume) increases
proportionally to the overlap volume (black-shaded region), creating an attractive
interaction between the large colloidal particles (blue spheres).

with hard-sphere interaction potentials. Consider two colloidal spheres of radius D/2;

each sphere will be surrounded by a depletion layer (the purple regions in Figure 1.6)

of thickness, d/2 (the radius of the depletant). Physically the depletion layer (not to

be confused with the double-layer, etc.) indicates the volume around the large par-

ticle wherein the center of the small sphere can never penetrate (due to hard-sphere

repulsion between depletant and large sphere). Thus, for hard spheres, the depletion

layer thickness is equal to the small particle radius. With this description in mind,

the attractive interaction potential between the large spheres due to the presence of

the depletants can be readily calculated. The strength of the interaction can be com-

puted from the product of the osmotic pressure of the small spheres and the overlap

volume, Voverlap (the black region in Figure 1.6b), of the depletion layers. With this

picture, the potential is related to the work (i.e., pdV ) to move the large particles

together. The small sphere osmotic pressure is:

P = NdkBT. (1.12)
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HereNd is the bulk number density of the small spheres, kB is the Boltzmann constant,

and T is the temperature. Computation of Voverlap as a function of the large particles’

center-to-center distance, r, is straightforward but cumbersome. The product of these

terms gives a depletion potential:

U(r) =


∞ if r < D

−PVoverlap(r) if D ≤ r ≤ D + d

0 if r > D + d.

(1.13)

Here the overlap volume is:

Voverlap(r) =
π

6
(D + d− r)2(D + d+

r

2
). (1.14)

Notice the minimum potential occurs when the two colloidal spheres are in contact

at r = D.

Another way to consider this problem is from the entropic point of view. As

discussed by Asakura and Oosawa [7], with the entropic viewpoint, we compute the

entropy gained by the system (essentially the sea of depletants) when the two large

colloidal spheres move together. We can first consider two colloidal spheres in a “bath”

of depletants. Because the number of depletants is much larger than the number of

colloidal particles, we can disregard the entropy of the colloidal particles and only

consider the entropy of the smaller particles. Using the ideal gas approximation, we

assume that the entropy of the depletants is S ≈ kB ln (Va), where S is the entropy

and Va is the volume accessible to the depletants.

As mentioned earlier, each depletant is excluded within a radius of each colloidal

particle surface; this volume is referred to as the excluded volume Vexc. When the
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colloidal particles are well separated (r > D + d) as shown in Figure 1.6a the total

accessible volume is the volume of the system minus the exclusion zones V (1)
a =

V −Vexc. When the colloidal spheres come within a depletant diameter of one another

(r < D + d), as shown in Figure 1.6b, the exclusion zones overlap. The accessible

volume changes to V (2)
a = V − Vexc + Voverlap. Therefore, the change in entropy is:

∆S = kBNd

[
ln (V (2)

a )− ln (V (1)
a )
]
≈ kBNdVoverlap, (1.15)

where Nd is the number of depletants; thus, the free energy is reduced by ∆F =

−T∆S = −NdkBT (Voverlap) making it favorable to the depletants. Essentially, the

amount of free volume available to the depletants increases when the regions of ex-

cluded volume around the large spheres overlap [31]. Additionally, the ideal gas

approximation states that NdkBT = P , therefore ∆F = −PVoverlap.

1.3. Geometric Frustration on a Triangular Lattice with Anti-

ferromagnetic Interactions

The last important background feature we will discuss is frustration in the con-

text of the “spins” in our buckled colloid problem. Frustration emerges when there

are competing interactions in complex physical systems. One way a system can be

frustrated, for example, is when local geometric or topological constraints conflict

with the underlying interparticle interaction rules. In such cases, the local interac-

tion energies of the particles cannot be simultaneously minimized on the lattice [150].

Among other things, this can lead to unconventional and exotic ground state config-

urations. These problems are interesting in their own right, and frustrated systems

are sometimes used as a starting point to help understand complex materials such as

glasses [103].

17



The classic example of a frustrated system is antiferromagnetically coupled Ising

spins on a triangular lattice [167]. These spins, denoted as s, can have two possible

states, either pointing up or down and down, where s = ±1. Generally, the energy

for the Ising model contains two significant contributions: the interactions between

neighboring spins and the effect of an applied magnetic field on each spin. The

starting point for analysis is the interaction energy, which can be written with the

following Hamiltonian:

H = −J
∑
⟨i,j⟩

sisj, (1.16)

where ⟨i, j⟩ denotes nearest-neighbor pairs, and the sum
∑

⟨i,j⟩ is taken over nearest-

neighbor pairs. J is a coefficient that parameterizes the nearest neighbor spin-spin

interaction strength. Without an applied field, the antiferromagnetic coupling (J > 0)

tends to induce anti-parallel alignment between neighboring spins (see Figure 1.7). On

a square lattice in 2D, each up-spin can have down-spin nearest neighbors. However,

this energetically satisfying situation amongst nearest neighbors is not possible on

the triangular lattice. This is the essence of geometrical frustration. The underlying

lattice is incompatible with the antiferromagnetically interacting spins.

The frustration phenomena can be seen from spins on a triangle (Figure 1.7a).

Locally within each triangle, the three spins can only have two nearest neighbors that

are anti-parallel (i.e., two optimal bonds), but the third cannot be optimal. Notice

that if we reverse these spins, we will get a different configuration but the same energy

because one-third of the bonds are still frustrated. Thus there are degenerate ground

states for the spins on the triangle. Then, moving to a triangular lattice of spins

(Figure 1.8), we can have many possible arrangements, including the arrangement of

alternating spins shown on these hexagonal clusters. Notice, at the center of each

hexagon is a free spin represented as a green double-headed arrow. We can reverse
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(a) (b)

Figure 1.7: Spins on different geometrical plaquettes. The red and blue arrows indi-
cate two different Ising states of spin-up and spin-down, respectively. (a) Three Ising
spins on a triangular plaquette. The antiferromagnetic interaction favors anti-parallel
alignment or opposite states of spins and their nearest neighbors. The spins cannot
be simultaneously anti-parallel to each other because of the triangular geometry. (b)
Four Ising spins on a square plaquette. On a square plaquette, the spins can be si-
multaneously anti-parallel to each other.

Figure 1.8: A triangular lattice of spins. The center of each hexagon contains a free
spin (green double-headed arrow).
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the direction of the free spins at no energy cost and obtain a new ground state. As

Wannier [167] showed, this analysis leads to an exponential number of degenerate

and frustrated ground states. This situation, in turn, leads to the possibility of large

fluctuations in the magnetization and non-zero entropy at zero temperature.

1.4. Spins on a Triangular Lattice with Ferromagnetic Coupling

This thesis work aims to show that we can vary the coupling, J (analogous to the

Ising model), in our quasi-two-dimensional colloidal system from antiferromagnetic to

paramagnetic and ferromagnetic; thus, understanding each of these phases is essential.

The antiferromagnetic behavior was briefly discussed in the previous section. This

section discusses spins on a triangular lattice with J > 0 (ferromagnetic) coupling. A

more detailed explanation of the Ising model will be given in Chapter 3.

Unlike spins with antiferromagnetic coupling, the local interaction energies of the

spins can be simultaneously minimized for ferromagnetic systems. This is because

the interaction, J , between neighboring spins in the ferromagnetic model induces a

parallel alignment of neighbors, which means that the energy is minimized (favorable)

when the spin pairs are both +1 and unfavorable when spin pairs are +1 and −1.

One simple way to understand the Ising model with ferromagnetic coupling is to

calculate the magnetic order of the system through magnetization. The magnetization

counts how many spins are pointing up and down on average:

M =
1

N

∑
i

si =

〈
N+ −N−

N
,

〉
(1.17)

where N is the total number of spins, N+ is the number of up spins, and N− is the

number of down spins. M can have values from −1 to +1. The absolute value |M |
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(a) (b)

Figure 1.9: Triangular lattice of spins. The red and blue arrows indicate two different
Ising states of spin-up and spin-down, respectively. (a) The paramagnetic phase is
where there is no magnetic order and M = 0. (b) The ferromagnetic phase is where
the spins are all ordered and M = 1.

can be used to characterize magnetic order. When |M | is close to zero, the system is

disordered, with roughly half the spins pointing up and half the spins pointing down.

When |M | is close to one, the system is ordered, where all the spins point in the same

direction. Positive or negative signs in M simply indicate whether the magnetic order

points up (positive) or down (negative) [139].

When J is positive and small, there is no magnetic order, and M = 0, the system

is in the paramagnetic phase (see Figure 1.9a). At larger J , the system becomes or-

dered, and all the spins align in one direction. This state, where there is macroscopic

magnetic order, is called the ferromagnetic phase (see Figure 1.9b) and |M | = 1. The

rapid nonlinear crossover from paramagnetic to ferromagnetic at a specific J/kBT

indicates the phase transition. Mean-field theory can be used to approximate the

value at which the Ising coupling J/kBT transitions from paramagnetic to ferromag-

netic. The mean-field theory is an approximation that ignores many-body correlations

amongst neighboring spins and assumes that spins fluctuate independently with the
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same statistical distribution [139]. So the expectation value of the energy is taken to

be:

⟨H⟩ = −J
∑
⟨i,j⟩

⟨sisj⟩ ≈ −J
∑
⟨i,j⟩

⟨si⟩⟨sj⟩. (1.18)

Because the spins are assumed to fluctuate independently and are identical, their

expectation value is ⟨si⟩ = ⟨sj⟩ = M . Therefore, the product in Equation 1.18

becomes M2. Therefore, the mean-field theory interaction energy reduces to:

H ≈ −1

2
NJqM2, (1.19)

where q is the coordination number of the lattice. In the case of the triangular

lattice q = 6 because each spin interacts with six neighbors. To obtain the transition

condition for J/kBT , we calculate the free energy, F = ⟨H⟩ − TS, as a function of

magnetization. The entropy, S, can be calculated from the number of microstates

and will be derived in greater detail in Chapter 3.

The free energy as a function of magnetization is [139]:

F

NkBT
= −

(
Jq

2kBT

)
M2 −

(
h

kBT

)
M

+

(
1 +M

2

)
log

(
1 +M

2

)
+

(
1−M

2

)
log

(
1−M

2

)
.

(1.20)

The critical/transition temperature (the temperature at which the phase transition

occurs) requires the second derivative of Equation 1.20 with respect to the magneti-

zation evaluated at M = 0. The second derivative is:

∂2

∂M2

(
F

NkBT

)
= − Jq

kBT
+

1

2(1 +M)
+

1

2(1−M)
, (1.21)
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and when M = 0:
∂2

∂M2

(
F

NkBT

) ∣∣∣∣∣
M=0

= 1− Jq

kBT
, (1.22)

therefore, the transition temperature occurs at Tc = Jq/kB [139].

1.5. Organization of Thesis

This thesis is organized as follows. Chapter 2 describes the experimental methods

and details of the experiments. Chapter 3 introduces the central theory of this thesis

based on a straightforward (simplified) hard-sphere model in quasi-1D; this model

shows how the Ising coupling constant can be tuned from the antiferromagnetic to

the para- and ferromagnetic regimes via modification of geometrical parameters and

short-range depletion attraction. Then we develop more comprehensive models in

three dimensions (quasi-2D), with and without wall attractions, to provide context

for the experiments. Chapter 4 presents the main results and discusses the dynamical

observations of the experiments. Chapter 5 summarizes and suggests topics for further

study.
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CHAPTER 2

Experimental Methods

2.1. Background and Motivation

Experiments with model colloidal suspensions have generated fundamental in-

sight into melting in 2- and 3-dimensions [6, 58, 82, 89, 104, 105], crystal physics

[70, 76, 156], nucleation kinetics [48, 60, 149, 151, 165], and the nature and mechanics

of disordered solids [22, 26, 75, 94, 175]. Colloidal investigations are complementary

to atomic studies for many reasons. One reason is that the length- and time-scales

for observation of constituent motions in suspension permit direct visualization and

tracking with single-particle resolution [25]. Thus, the investigations of model col-

loidal systems continue to test ideas from statistical mechanics, often unifying soft-

and hard-matter phenomenology.

A captivating model system that has been studied to a lesser degree than bulk

crystals, glasses, and liquids, is the buckled colloidal monolayer [24, 59, 87, 88, 122,

138, 142, 143, 179]. This system consists of colloidal particle assemblies confined by

two walls. The walls are separated by ∼1.5 particle diameters or less; the particles in

this system self-assemble into a quasi-2D buckled monolayer on a triangular lattice.

This system provides a colloidal analog of the classic frustrated antiferromagnetic

Ising model first studied by Wannier [167].

In this system, the particle-free volume (entropy) depends on the out-of-plane po-

sition of its nearest neighbors. It is maximum when the nearest neighbors buckle in

opposite directions. The up-and-down out-of-plane particle displacements are analo-

gous to Ising spins that point up and down. By varying the diameter of the colloidal
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spheres while holding the wall separation constant, it is possible to tune nearest-

neighbor free-volume differences and consequently vary their effective antiferromag-

netic coupling constant. Therefore, experiments based on these colloidal systems can

probe “spin” configurations, “spin” dynamics, and lattice distortions as a function of

interaction strength and frustration [59, 87, 88, 142, 143, 179].

The work in this dissertation introduces a new experimental twist, and a more

comprehensive theoretical model of a quasi-2D buckled monolayer system, that en-

ables tuning of the sign and magnitude of the Ising coupling constant in-situ. As

a result, the nearest neighbor “spin” interactions can vary from antiferromagnetic

to paramagnetic and ferromagnetic. This basic phenomenon is demonstrated in ex-

periments that employ suspensions of nearly hard-sphere particles of fixed diame-

ter and tiny rod-like micelles whose length can be tuned by varying temperature

[33, 33, 53, 136, 137]. The micelles induce a short-range depletion attraction between

nearest-neighbor particle pairs with strength that varies with cylindrical micelle rod

length. This depletion force is nearly zero at low temperatures, is significant at high

temperatures, and is variable in between. The effective Ising coupling constant is thus

set by a combination of the antiferromagnetic free volume effect associated with the

large particles without depletion, which prefers oppositely buckled neighbors, and the

depletion attraction effect, which prefers neighbors with the same buckling. Since the

micelle rod length depends on temperature, the new effective coupling constant can be

modulated in amplitude and can change its sign using temperature to tune depletion

attraction strength. These experimental results and observations are corroborated by

the theory discussed in Chapter 4.

In this chapter, we describe the experimental protocols and procedures needed to

produce the experimental portion of this dissertation work. Section 2.2 describes how
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the samples are prepared and gives details about the mixtures of colloidal particles

and the solvent. Section 2.3 provides information on the glass treatment and cleaning

protocols. Section 2.4 discusses wedge cell assembly for the experiments and provides

details about the quasi-two-dimensional confinement of colloidal particles. In Section

2.5, the particle tracking and image acquisition tools are discussed. Section 2.7 gives

an overview of geometric measurements for colloidal particles and the wedge cell thick-

ness. Section 2.8 provides details about how the temperature jump in experiments

is carried out. Finally, Section 2.10 gives details about the temperature-dependent

interparticle potentials, how they were obtained and fitted, etc.

2.2. Suspension Preparation

The colloidal particles employed in the experiments are polystyrene microspheres

(Thermo Fisher Scientific) with a manufacturer-measured nominal diameter D =

1.0 ± 0.01µm. The microspheres are rinsed in ultrapure water (18.2MΩ), and ag-

gregates are removed by repeated centrifugation. The cleaned particles are then

suspended in an aqueous solution of the surfactant 55mM of hexaethylene glycol

monododecyl ether, also known as C12E6. C12E6 can form rod-like micelles whose

length varies with temperature, thereby permitting temperature-tuning of the deple-

tion attraction between colloidal particles in suspension. 2mM of NaCl was added to

the solution (which gave a Debye screening length of κ−1= 7 nm) to prevent particle

flocculation.

The ten-step preparation process is outlined below:

1. Add 400µL of 1.0µm colloidal particles to a 1.5mL centrifuge tube.

2. Add 1100µL of ultra-pure water (18.2MΩ · cm) to the 1.5mL centrifuge tube.

3. Vortex the suspension for 30 seconds.
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4. Centrifuge mixture at 1500 rpm for 20 minutes.

5. Transfer 1450µL to a fresh 1.5µL centrifuge tube, such that 50µL remains in

old centrifuge tube.

6. Repeat steps 3-5 three times.

7. Take the remaining solution and vortex again for 30 seconds.

8. Centrifuge the remaining mixture at 2400 rpm for 20 minutes such that most

of the colloidal particles and remaining water are separated.

9. Remove the cloudy top portion of water, approximately 500µL, so only particles

remain at the bottom of the centrifuge tube.

10. Pipette 400µL stock solution of the surfactant C12E6 to the centrifuge tube

that contains particles.

Steps 3-5 are performed to remove large particles from the particle batch. The cen-

trifuge causes the large particles to migrate to the bottom of the centrifuge tube,

which is why we discard 50µL at the bottom of the centrifuge tube. Steps 7-8 are

performed to remove the small particles from the mixture. Steps 9-10 are done at a

higher rpm so that the colloidal particles are centrifuged to the bottom and water is

at the top half of the tube. The water is then pipetted out and discarded. After the

particles have been separated from the water, 50µl of the 55 mM solution of C12E6 is

pipetted into the tube. The tube is vortexed for thirty seconds to mix the particles

with the surfactant solution.
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Figure 2.1: Image of the sample after the cloudy top portion of water is removed,
leaving only particles at the bottom of the tube (step 9).

2.3. Glass Treatment and Cleaning Protocols

In order to obtain a quasi-2D sample cell to hold the colloidal suspension, a cell

with a variable wall-to-wall separation, H/D, needs to be constructed; here, H is the

wall-to-wall separation, andD is the particle diameter. The wedge requires two 20mm

× 50mm glass coverslips #1.5 (170µm) thick (preferably manufactured by Electron

Microscopy Sciences). Before constructing the wedge cell, the coverslips must be

cleaned thoroughly before use; otherwise, particles will adhere to the coverslip surface.

Generally, most coverslips come with a coating that the manufacturer has applied,

and this coating is removed before wedge cell construction by bathing coverslips in

a base solution for a minimum of thirty minutes, preferably two hours. The base

(pH ≈ 14) wash is a solution comprising 5 g of sodium hydroxide pellets, 20ml of

ultrapure water, and 30ml of ethanol. This procedure removes anti-stick coating,
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organics, dirt, and dust on the coverslips’ surface. After the base bath, the coverslips

are individually washed with ultrapure water and isopropyl alcohol and dried using

forced air.

2.4. Wedge Cell Construction

Top-down 

View

Side View

Bottom Coverslip

Top Coverslip

Bottom CoverslipUV Glue

Figure 2.2: Wedge Cell Construction. The spacer, shown in orange, is made from UV
glue. Two rows and two columns of dots are placed on the bottom coverslip, and the
UV glue is cured. Then the top and bottom slips are “sandwiched”. The end with no
glue binds together by capillary forces/action.

After the sample preparation and glass cleaning protocols are performed (de-

scribed in sections 2.2 and 2.3), the wedge cell that holds the colloidal suspension is

constructed (see Figure 2.2). To create the gradient of H/D, spacers must be placed

on one end of the cell. First, UV glue drops (Norland adhesive 65) are placed on

the bottom coverslip in two rows and three columns and then cured with UV light.
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After drying, the coverslips were aligned and sandwiched at a small angle; binding

was achieved via capillary forces. 25µL of the sample solution was pipetted into the

sample cell, and the remaining peripheral openings were sealed. The quasi-2D sample

cell is then mounted to a glass slide for stability.

The resultant sample cell is placed on the stage of an inverted microscope (Le-

ica DMIRB) and is viewed through a 100× oil-immersion objective. The sample

temperature is controlled by a heater (peCon GmbH) on the objective, with 0.1 ◦C

resolution. The colloidal particle position and brightness (intensity) are collected by

video microscopy using a UP-685-CL CCD camera. Particle position and motions

are analyzed with standard particle tracking methods and algorithms [25] and will be

discussed in the next section.

2.5. Image Acquisition, Processing, and Particle Tracking

With modern video technology, videos comprised of a series of images, such as

those shown in Figure 2.3, can capture images of thousands of colloidal particles in

seconds. The experiments described in this work utilized a CCD camera with a frame

rate set at 27.5 frames-per-second (fps). The CCD camera used in all experiments

was a UP-685-CL manufactured by Uniq Vision. It is a 10-bit full-frame resolution

CCD camera that utilizes progressive scanning technology and a 659 x 494 (H x V)

pixel sensor.

Analysis of the series of microscope images enables the extraction of the trajecto-

ries of individual colloidal particles as a function of time (i.e., extraction of particle

brightness and position). In general, the spatiotemporal distribution of particle posi-

tions in the sample is defined as follows:
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Figure 2.3: Raw experimental image of a quasi-two-dimensional colloidal suspension.

ρ(−→r , t) =
N∑
i=1

δ(−→r −−→r i(t)). (2.1)

Here −→r i(t) is the location of the ith particle within the ensemble of N particles at

the particular time t [25]. Measuring this distribution can be challenging, depending

on the system and experimental desires. If colloidal particles are rearranging in the

transverse (xy) plane, then full tracking in 3D may be necessary and is certainly

more difficult than tracking the particles in our experiments which do not rearrange

in the transverse direction. In the experiments discussed in this work, there is very

limited translational motion, and a majority of this motion is in the vertical plane

(up/down). In general, most colloidal tracking software is based on software de-

scribed by the seminal paper by Crocker and Grier [25]; the particle tracking software

for projects in this thesis relies on the basic tenets outlined in that paper. For parti-

cle tracking of colloidal systems, this entails greyscale correction of images, locating

particles, choosing the best resolution for characterizing particle position, identifying
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and rejecting duplicate particles, and then linking particle trajectories to obtain time

series dynamics.

2.5.1. Image Processing

Image processing is used in particle tracking to quantify data from video mi-

croscopy. Extracting the single particle trajectories of our experimental videos further

facilitates calculations of particle brightness, positions, and pair-potentials.

Raw images coming directly from the camera usually contain a range of imperfec-

tions contributing to particle tracking errors; thus, correcting the imperfections before

locating the particles is vital. Some of these issues are noise, nonuniform illumination,

contrast, and distortion of imaged particles which introduce errors into Equation 2.1.

Therefore, the image must be processed and restored into a trackable image. Com-

mon distortions that arise can be caused by defects in the microscope’s optics (i.e.,

dust particles, misaligned condenser, beam illumination, geometric distortions, and

contrast unevenness from nonuniform pixel sensitivity).

To distinguish between background and colloidal particles, one first must correct

for contrast gradients and uneven illumination. This can be alleviated by subtracting

the background, IMb(x, y) from a raw image IM(x, y) where x and y are the in-plane

pixel coordinates. The background is approximated as a boxcar average over the raw

image of a region of 2w + 1, where is w = Rpixels + 1 pixels, and Rpixels is a single

colloidal particle radius in pixels and

IMb(x, y) =
1

(2w + 1)2

w∑
i,j=−w

IM(x+ i, y + j). (2.2)

Another common issue when using a CCD camera is that there is noise that arises
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Figure 2.4: Post-processed image of Figure 2.3 (raw experimental image).

during the transfer between the camera and the frame grabber. The noise can be

smoothed by convolving IM(x, y) with a Gaussian done by the following:

IMG(x, y) =
1

B

w∑
i,j=−w

IM(x+ i, y + j) exp

(
−i

2 + j2

4σ2

)
, (2.3)

where σ = 1 pixel and B =
(∑

i,j=−w exp(−i2/4σ2)
)

[25]. The post-processed image

is the difference between the smoothed image, IMG, and the background, IMb. Figure

2.4 shows a post-processed image after applying equations 2.2 and 2.3.

2.5.2. Locating Particles

After processing and removing imperfections, the colloidal particles need to be

identified, and their brightness and positions need to be extracted. The candidate
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particles are the brightness maxima within the image. A candidate pixel is a pixel

that is brighter than all other pixels within a distance w. Only the brightest pixels

are particle candidates. A threshold can then be chosen to require particle candidates

to be within a particular brightness percentile for a given image, e.g., usually, they

are the top thirty percent of the brightest pixels within the image [25]. Figure 2.5

shows tracked image after post-processing Figure 2.4.

Figure 2.5: Particle tracking (red dots) of post-processed image Figure 2.4.

2.5.3. Linking

After all the particles have been located in each image of the video (20,000 images),

each particle’s brightness and position must be linked over the entire time series to

form a trajectory and obtain ρ(−→r , t). To do this, one must determine where each

particle is in each image and where it was in the previous image. The probability of
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one Brownian particle in-plane diffusing is

P (∆|τ) = 1

4πDdτ
exp

(
−∆2

4Ddτ

)
, (2.4)

for a distance ∆ and time τ , where Dd is the particle diffusion coefficient. Looking

at the ensemble of N particles, Equation 2.4 becomes:

P (∆|τ) =
(

1

4πDdτ

)N

exp

(
−

N∑
i=1

∆2

4Ddτ

)
. (2.5)

The likelihood of a particle being the same from one image to the next maximizes

P (∆|τ) [25]; generally, this method works well for non-interacting and interacting

particles, provided that the time interval during which they diffuse is sufficiently

small. Because the particles in our experiments move only a very small amount in

xy, and because their movement is dominated by vertical motion in z, this approach

is an optimal method for our particle tracking.

2.6. Up and Down “Spin” Assignments

Figures 2.3, 2.4, 2.5, are experimental images derived from the same image (raw

experimental image, processed imaged, and the tracked image, respectively). Bright

and dark particles populate each image. Bright particles closest to the top coverslip

are located in the microscope’s focal plane, and the dark particles near the bottom

coverslip are slightly out of focus. The up and down buckling are assigned two Ising

“spin” states: si ± 1. The assignment is depicted in Figure 2.6b for an ith single

particle where the particle “spin” trajectory is denoted as si(t). The gray waveform

is the particle brightness scaled, centered on zero, the blue lines indicate when the

particle is down, and the red is when the particle is up.
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Figure 2.6: Waveform discretization. (a) Bimodal histogram of particle intensities in
a single frame H/D = 1.5, T = 21 ◦C. The dashed blue line is centered on the 25th
percentile of the histogram, and the red dashed line is centered on the 75th percentile.
The black dashed line, Icut(t), is the cut made to assign particle “spin”. Above (below)
the cut, si = +1 (si = −1). (b) The gray waveform is the particle brightness scaled,
centered upon zero, the blue lines indicate when the particle is down, and the red is
when the particle is up.

Each particle’s up-down trajectory is extracted by creating a two-dimensional

histogram of the ensemble brightness of all particles as a function of time, I(t). At

each time, t, the ensemble of particle brightness’ exhibits a bimodal distribution

(Figure 2.6a).

To assign a particle as “spin” up or down, a threshold, Icut(t), is calculated using
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Figure 2.7: Particle tracking reconstruction. The figure on the left is the recon-
struction based on our waveform discretization, and the figure on the right is the
experimental image.

the two peaks in I(t). In practice, we typically find that the two peaks are at the 25th

and 75th percentiles of the I(t) distribution; the up/down cut is set halfway between

these two peaks. To check that our assignments are correct (shown in Figure 2.7), we

overlaid these assignments with experimental images and manually inspected them

to confirm matching.

2.7. Measurements of Sample Geometric Parameters

In this section, the methods for the measurement of sample geometry and related

analysis are discussed. Knowledge of the wall-to-wall separation H/D and the lattice

spacing L/D, in units of the particle diameter D, are needed to estimate the Ising

coupling constant. Specifically, the Ising coupling constant in our models depends on

interparticle potential (i.e., the depletion interaction potential) and the ratio of the

wall- and lattice-spacing to particle diameter.
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2.7.1. Wall-to-wall Separation Measurements

To estimate the diameter-normalized wall-to-wall separation of the sample cell

walls, H/D, a region of interest was first identified before image acquisition. Then

the temperature was adjusted to 31 ◦C, where attraction strength is very large; in this

situation, the particle dynamics are entirely arrested, and the buckled particles are

stuck to their respective walls. Next, employing a piezo-positioning device (Visitech),

the focal plane was scanned through the sample, in z-direction, in 0.1µm increments.

We scanned from one coverslip to the other (bottom to top). The images of this scan

of the sample are shown in Figure 2.8.

This scan extracts the median intensity, I(z), of the buckled-up and buckled-down

particles as a function of sample position z. We select the image where the up particles

are in focus and use particle tracking to identify the particle centroids in the field of

view. Then the bright and dark particles are separated using the procedure outlined

in Section 2.6 to identify and label the up and down particles in the scan. We fit the

intensity profiles to a function of the form:

I(z) = A exp
[
−(z − ẑ)2/2w2

z

]
+ I0, (2.6)

where A and I0 are nuisance parameters that adjust the scale and set the minimum

and maximum of the intensity scale. wz is another nuisance parameter that sets the

z-scale. The goal of this function (Equation 2.6) is fit for ẑ; in other words, the goal of

the fit is to find where I(z) is maximized. Figure 2.9 shows the extracted positions zup

and zdown that maximized the intensity for buckled-up and buckled-down particles,

respectively. The vertical center-to-center distance is ∆z = zup − zdown, and the wall

separation is H = D +∆z as indicated by the schematic in Figure 2.10.
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Figure 2.8: Using a piezo-positioner, we scanned the image focal plane through the
sample (i.e., along z in 0.1µm increments). The scan ranged fully from one coverslip
to the other (bottom to top). From the scan, we extract the median intensity, I(z),
of the buckled-up and buckled-down particles as a function of sample position z.
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Figure 2.9: From the focal plane scan shown in Figure 2.8, we extract a median
intensity, I(z), as a function of vertical position, z. These data are plotted for the
buckled-up (yellow curve) and the buckled-down (green curve) particles. The intensity
profiles were fit to extract the vertical positions which maximize intensity for up versus
down particles, i.e., the vertical positions zup and zdown. The vertical center-to-center
distance is ∆z = zmax

up − zmax
down, and H = D + ∆z. The D used is from the particle

manufacturer. H/D is measured within a relative uncertainty ≲ 8%, dominated by
the ∼ 0.1µm resolution of ∆z.
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Figure 2.10: Wall-to-wall measurement schematic. The up particle is in grey, and the
down particle is in black, both with radius R. Therefore, the wall-to-wall separation
is H = 2R +∆z = D +∆z.

2.7.2. Lattice Spacing Measurements

To estimate the diameter-normalized lattice spacing, L/D, in the experiments, the

mean diameter of the colloidal particle, D, is measured in pixels. Therefore, we made

a sample with only water and particles. The cell’s perimeter is not sealed, enabling

the sample to desiccate over several days. The image of the desiccated monolayer is

shown in Figure 2.11.

After the sample is dry, a region of interest is found in the part of the cell that is

a close-packed monolayer (∼1.0 particle diameter thick). Then, the center-to-center

distance is measured between each particle and its nearest neighbors. From this data,

the mean of the distances is determined, giving a measurement of D in units of pixels,

with a mean value of 11.23 pixels.

In sealed samples with depletants, L was measured for a specific region of interest

by extracting the mean distance between nearest neighbor particles in the same focal

plane (i.e., pairs of particles that are buckled up). Since the particles are approx-
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Figure 2.11: Image of the desiccated monolayer.

imately ten pixels in diameter, L/D could only coarsely be measured; within this

precision, the mean L/D for each H/D is shown in Figure 2.12. The average L/D

across samples was 1.01 (with a standard error of the mean 0.002). The sample vol-

ume fractions are thus slightly less than close-packed. (Note, within the experimental

accuracy, the model predictions for the coupling constant are not very sensitive to

L/D.)

2.8. Temperature Variation for Sample Preparation

The primary goal of our experiments is to demonstrate the general ideas about

Ising coupling constant variation. Due to particle-wall attraction as a result of de-
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Figure 2.12: L/D measurement at different wall-to-wall separation, H/D. Error bars
indicate the standard error of the mean.

pletion, the particle-wall interactions can influence the measurements (and analysis).

We have found that particle-wall depletion interactions do not significantly influence

the free energy or coupling constant, but we have also found experimentally that

these interactions when they are strong, can affect spin-flip dynamics and introduce

dynamic arrest. Dynamic arrest at high temperatures, where the depletion-induced

wall attraction is large, can prevent the sample from reaching equilibrium. The data

were collected at discrete temperatures, and the experimental protocol was designed

to reduce the effects of the dynamic arrest. Despite these efforts, Ising-like equilibrium

behavior was achievable only in the lower temperature samples.

At low temperatures, the dynamics were fast, and the samples rapidly reached

equilibrium. Therefore, before every temperature change, the sample was allowed to

equilibrate at a low temperature; then, we rapidly switched the sample temperature to
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Figure 2.13: Experiment Schematic. (a) Temperature jump schematic. (b) Schematic
of experimental setup, sample cell, and stage.

a higher value and collected sample images when the higher temperature was reached.

After completing the high-temperature image, the sample temperature was rapidly

lowered to the lowest temperature again, allowing the sample to equilibrate before

the next temperature jump. More specifically, we chose a sample with particular

H/D and L/D, then cooled it to 21 ◦C and acquired video. Next, the temperature

was rapidly increased to a higher temperature (e.g., 31 ◦C), and another video stream

were collected after the sample reached steady-state at this temperature. Then the

sample was cooled back to 21 ◦C, data was collected, and then the equilibration and

jump cycle was repeated for the other target temperatures. Target temperatures were
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acquired in the following order 31 ◦C, 29 ◦C, 27 ◦C, 25 ◦C, 23 ◦C, and again at 31 ◦C.

Although imperfect, this approach enabled us to start all samples in approximately

the same strongly fluctuating antiferromagnetic phase. Of course, the approach to

steady-state, especially for high-temperature samples which did not equilibrate, is

influenced by the microstates the system passes through.

The same temperature cycling was repeated for the other experiments at different

H/D. In total, we explored six different temperatures (21, 23, 25, 27, 29, 31 ◦C) at

three different H/D, taking a series of images/movies at 27.5 fps for 20,000 frames

(∼ 12 minutes).

2.9. Depletion Interactions in More Detail

The depletion interaction is crucial for this work and is needed for tuning the Ising

coupling constant. As we have previously discussed, entropic attractive interactions

between (large) colloidal particles can be induced by adding small solid particles or

small non-adsorbing macro-molecules (depletants) into a colloidal suspension [7, 163].

Depletants tend to be much smaller in size compared to the colloidal particles (e.g., in

our samples, 19 nm compared to 1µm). Adding depletants into a colloidal suspension

provides the ability to control suspension stability [18, 28, 36, 41, 67, 77, 92, 106, 126,

140, 154, 159] and phase behavior [1, 2, 43, 65, 74, 78, 83, 102, 114, 115, 119, 136,

137, 144, 147, 153].

Generally, the depletion interaction between colloidal particles in suspension,

U(r)/kBT , depends on the concentration and the shape of the suspended nanometer-

sized depletants. At a constant volume fraction, depletant rods of length ℓ and

diameter d will induce a stronger attraction than depletant spheres with diame-

ter d [86, 95, 97]. To vary interaction strength, one can increase depletant con-
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centration [74, 78, 83, 102, 119, 134, 144], change the radius of depletant spheres

[37, 43, 99, 114, 128, 132, 153], or impose tunable shape anisotropy [52, 53]. In this

dissertation work, temperature-tunable shape anisotropy is utilized to vary depletant

geometry and depletion interaction strength.

2.9.1. Depletion Interaction using Spherical Depletants

(a) (b)

Figure 2.14: Depletion between two colloidal spheres of diameter D in a suspension
of spherical depletants of diameter d. (a) Depletant (red spheres) centers cannot
move past the purple region (excluded volume). (b) At r < D + d, the excluded vol-
umes overlap (Voverlap), and depletant entropy increases proportionally to the overlap
volume (black-shaded region), creating an attractive interaction between the large
colloidal particles (blue spheres).

Depletants can be produced in a variety of shapes. Spherical depletants provide

the simplest introduction to understanding the depletion effect. Here we expand on

the depletion discussion we provided in the last chapter. Consider two large colloidal

spheres with diameter D in a suspension of small spherical depletants of diameter

d; assume D ≫ d. A depletion layer (a spherical shell in practice) of thickness d/2

will exist around the large colloidal particles (the purple region around spheres in

Figure 2.14). The center of the depletants cannot penetrate into this depletion layer

of excluded volume. These excluded volumes around the colloidal spheres will overlap

when D < r < D+d; here r is the center-to-center distance between colloidal spheres.
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As a result, a new free volume is made available to the small spheres in the sample

cell; this new free volume is denoted as Voverlap. As the overlap volume increases, when

the large spheres move closer together, the total accessible free volume available to

the depletants increases. Therefore their entropy increases and the system’s free

energy is lowered. This effect provides an entropic attraction between large spheres

at short-range. A careful analysis gives a depletion potential in the form [7]:

U(r)

kBT
= −3

2
ϕd

(
D

d

)
[D + d− r]2. (2.7)

Here ϕd is the depletant volume fraction, D is the colloidal sphere diameter, d is

the spherical depletant diameter, r − D is the surface-to-surface distance between

large colloidal spheres, kB is the Boltzmann constant, and T is the temperature

[7, 163]. Note this expression breaks down at high small-sphere volume fraction

wherein spatial correlation effects become significant; it is valid in the regime where

the volume fraction of the small spheres is relatively small. The corrections due to

correlations at higher small sphere volume fraction have been measured and discussed

[25].

The minimum of U(r) in equation 2.7, occurs at r = D when particles are in

contact, giving:
Umin

kBT
= −3

2
ϕd

(
D

d

)
. (2.8)

2.9.2. Depletion Interaction Between a Colloidal Particle and a Wall

In the presence of a wall, the overlap volume, Voverlap, in this case between a large

sphere and the wall, increases relative to that between two large spheres in the bulk

sample. This free volume accessible to the depletants is depicted in Figure 2.15. At

the wall, the functional form of the overlap volume (for small sphere depletants at a
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Figure 2.15: Schematic of depletion layer overlap volume (black) between a colloidal
sphere and spherical depletants.

relatively low volume fraction) is

Voverlap =
π

3
(d− r +D))2

(
3D

2
+
d

3
+ r −D

)
. (2.9)

At contact, it is approximately twice that of the overlap between two colloidal spheres

in the bulk [73]. Therefore, the force of attraction at contact between a colloidal

particle and the wall is twice as large as that between two colloidal particles in the

bulk. This wall attraction is well understood and has been measured experimentally

in binary hard-sphere suspensions, colloids in the presence of non-adsorbing polymers,

and colloidal-micelle suspensions [72, 101, 108, 145, 146]. Note, the wall attraction

effect will be roughly the same for sphere-like versus rod-like depletants.

2.9.3. Depletion Interaction using thin-rod-like Depletants

Spherical depletants only have translational entropy. Rod-like depletants have

both translational and orientational entropy [86, 96, 97]. The interaction between

two colloidal spheres in the presence of thin-rod depletants must account for both

types of entropy. It has been computed. An analytical form in the dilute regime is
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(a) (b)

Figure 2.16: Depletion between two colloidal spheres of diameter D in a suspension
of rod depletants of minor axis length d and major axis length ℓ.

[96]:
U(r)

kBT
= −2

3
ϕd

[
Dℓ

2d2
(1− (r −D)/ℓ)3

]
. (2.10)

Here ℓ is the depletant major axis length, and d is the depletant minor axis length

(see Fig 2.16), in the case where d/ℓ ≪ 1. Notice, the minimum of this potential at

contact depends on both the minor axis and major axis length of the depletant:

U(D)

kBT
= −2

3
ϕd

(
Dℓ

2d2

)
. (2.11)

Notice, if the minor axis (d) length of the depletant is held fixed, as in our experiments,

and the major axis (ℓ) increases, then the depletion attraction strength increases in

proportion to the rod major-axis length (it is depicted by Voverlap (the black region)

in the figure).

2.9.4. Depletion Interaction for Ellipsoidal (rod-like) Depletants

Interestingly, the surfactant C12E6 forms rod-like micelles. As noted above, the

geometric shape of these micelles will affect both the strength and range of depletion

attraction [1, 2, 11, 32, 33, 34, 53, 65, 73, 77, 86, 96, 163, 177]. Specifically, C12E6
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assembles into nanometer-size micelles that evolve from sphere-like at T < 20 ◦C to

rod-like T > 20 ◦C [47, 53]. The length of the micelle minor axis is d = 4.3 nm and does

not change with temperature. However, the major axis length ℓ of the micelle grows

with increasing temperature. This effect enables the attraction strength between

colloidal particles to be controlled in-situ.

When the minor-axis length of the rods cannot be neglected because of the aspect

ratio between ℓ and d (A = ℓ/d), the depletants can be modeled as ellipsoids. The

analytical form of this ellipsoid depletion potential has been determined [120] and can

be written in the following form:

U(r; ℓ, d, R, ϕd)

kBT
= ϕd

Dℓ

2d2
Q(r, ℓ, d). (2.12)

The remaining function in this depletion potential, Q(r, ℓ, d) is:

Q(r; ℓ, d) = c(r)− c(r)2

2
− 2

3
− 4

3
A−2 +

c(r)

(A
√
A2 − 1)

ln(A+
√
A2 − 1) (2.13)

when D ≤ r < D + d, and

Q(r; ℓ, d) = c(r)− c(r)2

2
− 2

3
− 4

3
A−2 +

[[Ac(r)]2 + 8]
√
(Ac(r))2 − 4

12A2
√
A2 − 1

+
c(r)

A
√
A2 − 1

ln

(
2

A+
√
A2 − 1

Ac(r) +
√

(Ac(r))2 − 4

)
,

(2.14)

when D + d ≤ r < D + ℓ. In Equations 2.13 and 2.14, c(r) = (r − D)/(ℓ/2) and

A = ℓ/d (aspect ratio). When A = 1, the depletants are spherical, and the minimum

of the potential is the same as in Equation 2.8. In the case where A → ∞, we have

thin-rod depletants, and the minimum of potential is the same as in Equation 2.11.
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2.10. Pair Potential Measurements and Methods

To estimate U(r)/kBT , one can use a statistical mechanics result that connects the

radial distribution function to the interparticle potential. In the limit of very dilute

large particle volume fraction [20], the relationship between the radial distribution

function and the potential mean force simplifies and is:

g(r) = e−βU(r). (2.15)

Thus, in our work, the normalized depletion pair-potential, U(r)/kBT , was derived

from measurements of the radial distribution function g(r) in the colloidal suspension

of dilute samples with colloidal packing fraction ϕp ∼ 0.013 shown in Figure 2.17. Us-

ing dilute samples reduces the influence of many-body interactions and ameliorates

the need to invert the data using integral equations. This procedure for extracting

U(r)/kBT has been used in several papers and is outlined in detail for the specific

surfactant system employed in this thesis by Gratale et al. 2016 [53]. Since our

conditions are slightly different from previous work, the present experiments com-

puted U(r)/kBT from new measurements of g(r) as a function of temperature. The

following sections will discuss the procedure for obtaining U(r)/kBT from the radial

distribution function, which is extracted from experimental images; we will also dis-

cuss corrections to the radial distribution function due to image artifacts and the

fitting procedure employed to extract theoretical fits for U(r)/kBT .

2.10.1. The Radial Distribution Function Correction

In traditional bright field microscopy and many other forms of microscopy, the

microscope resolution is ultimately limited by the diffraction of light. The resolution

is generally defined with respect to two distinct point-like objects. If the objects (e.g.,
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colloidal particles) are too close, then their point-spread functions overlap, and one

cannot readily determine their separation. The minimum separation for which the

two distinct point-like objects can be distinguished with confidence is roughly the

microscope resolution.

When viewed through a circular aperture, the image of a point-like object is

blurred, and the image (which includes diffraction effects) is generally like an Airy

disk [124]. Thus, when neighboring colloidal particles approach one another, their

Airy disks can overlap, which leads to the misidentification of the particle centroids

[40]. This phenomenon leads to systematic error in the measurement of the radial

distribution function, g(r), which relies on the accurate measurement of particle cen-

Figure 2.17: Dilute colloidal suspension and lone particle identification. The red x
symbol indicates the tracked particles, and the red squares indicate the selected lone
particles

.
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Figure 2.18: Experimental image of a lone particle being mirrored with itself at
various distances, r. This method is used to correct particle tracking errors due to
overlapping Airy disks.

troids. Therefore, a correction is needed to accurately measure U(r) from g(r), espe-

cially when the interesting part of the potential is at short range. In the literature,

[12, 53, 123], many papers have employed one particular method to correct the images

and thus obtain the corrected radial distribution from the measured radial distribu-

tion. This correction facilitates a more accurate measurement of the pair-potential

accurately.

The first step to making the g(r) correction is to measure the overlap distortion

of the Airy disks, which can be obtained directly from our dilute sample images.

We first identify all particles where that are not affected by overlap distortions with

neighbors, which we will call lone particles (particles surrounded by a red square in
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Figure 2.17). A mirror image of the lone particle is then created at a known center-

to-center distance, r, from the source particle (Fig. 2.18). Thus, a new composite

image is obtained with two particles (the source particle and its mirror image). Then,

using standard tracking procedures, the centers of the particle and its mirror image

are found; this procedure extracts the apparent distance, r̃, between each particle

and its mirror image. This scheme provides a way to determine the center-to-center

distance, r̃, as a function of the known center-to-center distance, r, for each particle.

This process is repeated for all the lone particles in the image and then averaged,

and it is repeated for thirty or more video frames to obtain better statistics (Figure

2.19a). We then plot and examine the slope of r̃(r) versus r; the slope deviates from

unity at small pixel values. There is distortion in these smaller pixel value regions

(i.e., the region surrounding the colloidal particles).

Next, we derive the corrected g(r) from the uncorrected g̃(r̃). The uncorrected g̃(r̃)

is measured directly from the dilute colloidal suspension (Figure 2.17). The corrected

g(r) is related to the uncorrected g̃(r̃) through a conservation of probability,

g(r)dr = g̃(r̃)dr̃, (2.16)

as discussed in reference [123]. Additionally, [123] also shows that when the density

is low enough to avoid three-body distortions, one obtains:

g(r) = g̃(r +∆(r))

[
1 +

d

dr
∆(r)

]
, (2.17)

where ∆(r) = r̃ − r is the difference between the apparent and assigned distances.

54



(a) (b)

(c)

Figure 2.19: (a) Measurement of center-to-center distance r̃ as a function of the
assigned distance r between the particle and its mirror image. The dashed black line
is the slope equal to unity (r̃ = r). (b) Derivative of r̃(r). (c) Radial distribution
functions of uncorrected g̃(r̃) (orange) and corrected g(r) (blue).
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Thus, plugging in ∆(r), we obtain,

g(r) = g̃(r̃)
dr̃

dr
. (2.18)

Finally, the derivative, dr̃/dr (see Figure 2.19b) is calculated and then multiplied

by the uncorrected g̃(r̃) to obtain the corrected g(r) (see Figure 2.19c). We use the

corrected g(r) to obtain the potential.

2.10.2. Fitting Procedure

After obtaining our corrected g(r) at each temperature, we invert g(r) to obtain

our experimental pair potential from the relationship,

U(r)/kBT = − ln g(r). (2.19)

The results are plotted as dots/circles in Figure 2.20a.

Next, we want to fit our experimental potential (the circles) to a “best” theoretical

potential Ut(r). The goal of this fit is to extract parameters (e.g., depletant volume

fraction, U(r)/kBT , and Umin) that will be used as input for calculating the coupling

constant, J/kBT . Our fitting procedure is based on the procedure outlined by Gratale

et al. 2016 [53].

First, an approximate guess for the true potential is made using the theoretical

model for the depletion potential (Equation 2.12 for ellipsoidal rods). This “the-

oretical” potential Ut(r; ℓ,D, d, ϕd) will be employed in the fitting. The parame-

ters in the fitting that are fixed for all temperatures are the depletant volume frac-

tion (ϕd=0.0049), depletant minor axis length (d = 4.3 nm), and colloidal diameter

(D = 1000 nm or 1µm). The variable adjusted for the temperature change is ℓ, the
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depletant rod length. A resultant Ut(r)/kBT is thus obtained and is then converted

to a theoretical radial distribution function gt(r) using the Boltzmann relationship:

gt(r) = e−Ut(r)/kBT . (2.20)

Finally, to account for polydispersity and camera resolution, gt(r) is convolved

with a Gaussian kernel with a fixed value of σ = 35.7 nm with kernel K(r, σ) =

exp[−r2/2σ2]. This gives a broadened radial distribution function gBt = gt ∗K(r, σ),

which accounts (primarily) for polydispersity. After the convolved radial distribu-

tion function is acquired, it is then inverted to obtain a broadened pair-potential

UB
t (r; ℓ, d,D, ϕd, σ)/kBT = − ln(gBt (r)), again utilizing the Boltzmann relationship.

Figure 2.20a shows the best fit potentials (solid lines) for each temperature, and

Figure 2.20b shows the best fit Umin/kBT versus temperature. To summarize, es-

sentially, we find the function, Ut(r), that when converted to g(r), broadened and

back-converted, fits the experimentally measured U(r) optimally.
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Figure 2.20: (a) Fitted pair-potentials where dots indicate experimental data and
solid lines are the Ut(r)/kBT fits. (b) Results of pair potential measurements. βUmin

is the depth of the measured interparticle potential well depth, which we plot for
each experimental temperature T . The inset shows βU(r) measurements at 31 ◦C
(hexagon markers).
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CHAPTER 3

Theoretical Framework and Modeling

3.1. Background

Thus far, we have discussed features of the buckled monolayer colloidal parti-

cle system with depletants. We have noted that this system offers the possibility

to tune the buckling effect, or alternatively to tune the magnitude and sign of the

Ising spin coupling constant in-situ. The effective Ising coupling constant, which

determines whether neighboring particles like to buckle in opposite directions, is set

by a combination of the original antiferromagnetic free volume effect without deple-

tion, which prefers oppositely buckled neighbors, and the depletion attraction, which

prefers neighbors with the same buckling (i.e., both neighbors up or both neighbors

down). When the large particle free volume effects dominate, then the coupling will

be antiferromagnetic; when the depletion attraction (i.e., small particle free volume

effect) dominates, then the coupling will be ferromagnetic. By varying the relative

strength of these two effects, which is possible in our case by varying sample temper-

ature, we can modulate the effective Ising coupling constant magnitude and change

its sign.

This chapter describes quantitative models that explain the crossover from antifer-

romagnetic to paramagnetic and ferromagnetic behaviors and therefore complement

the experimental results described in Chapter 4. The models permit the development

of state diagrams that characterize sample phase behaviors as a function of depletion

attraction strength or temperature. In addition, the models account for the effects

of geometrical parameters, i.e., the cell-thickness, and lattice spacing. In this chap-
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ter, we will develop models of increasing complexity and connect them to analytical

theory, simulation, and experiment.

This chapter is organized as follows. In section 3.2, the Ising model is explained.

Section 3.4 discusses a simple quasi-1D model of our colloidal system that captures

the essential effect, and it then discusses a more realistic quasi-2D model that is more

useful for comparison to the experiments. Finally, section 3.5 summarizes the model

results.

3.2. The Ising Model

Before delving into related models for colloids, we will review some fundamental

results of the Ising model. The well-versed reader can skip this section. This section

(section 3.2) closely follows the approach (and text) developed in books by Selinger

[139] and Pathria [109]. The Ising model is a model with discrete magnetic moments

of spins arranged on a lattice. The spin on each lattice site, i, is in one of two states,

si = ±1; si = +1 is an up spin, and si = −1 is a down spin. Generally, the energy

of the Ising model includes two contributions: the energy due to interactions of spins

with neighboring spins, and the energy of a spin in an applied magnetic field (which

can be zero, e.g., if the applied field is zero). The Ising Hamiltonian is:

H = −J
∑
⟨i,j⟩

sisj − µh
∑
i

si. (3.1)

In the case of interest to us, the ⟨i, j⟩ denotes nearest-neighbor pairs, and the sum∑
⟨i,j⟩ is taken over nearest-neighbor pairs. The interaction coupling constant or Ising

coupling constant is J , µ is the spin magnetic moment, and h is the magnetic field. In

the ferromagnetic problem, J is positive and parallel alignment of neighboring spins

is favored; the energy is lower when spin pairs are both +1 or both −1. On the other
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hand, when J is negative, the energy is minimized when the neighbors are in opposite

states (i.e., si = +1 and sj = −1 or vice-versa); this is called antiferromagnetic

coupling.

The simplest way to characterize the magnetic order of the system is through the

sample magnetization. The magnetization is:

M =
1

N

∑
i

si =

〈
N+ −N−

N

〉
. (3.2)

Here N is the total number of spins, N+ is the number of up spins, and N− is the

number of down spins. M can vary from −1 to +1. When |M | is close to zero, the

spin system is highly disordered, with roughly half the spins pointing up and half the

spins pointing down. When |M | is close to one, the system is ordered, i.e., all the

spins point in the same direction.

3.2.1. Non-Interacting Model

To understand the consequences of the Ising model, we begin with the partition

function:

Z =
∑
{S}

e−E{S}/kBT . (3.3)

Here {S} refers to the complete set of spin configurations on the lattice.

In the case where we have non-interacting spins, J = 0, the energy simplifies, i.e.,

H = µh
∑
i

si, (3.4)

and therefore, the partition function becomes:
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Z =
∑

s1=±1

∑
s2±1

· · ·
∑

sN=±1

eµh/kBT
∑

i si . (3.5)

The partition function can be written as a product of single-spin partition functions,

i.e.,

Z =

[ ∑
s1=±1

eµh/kBT
∑

i s1

][ ∑
s2=±1

eµh/kBT
∑

i s2

]
· · ·

[ ∑
sN=±1

eµh/kBT
∑

i sN

]
, (3.6)

which can be rewritten as

Z = ZN
1 , (3.7)

where

Z1 = eµh/kBT (+1) + eµh/kBT (−1). (3.8)

The probability of a spin pointing up on a lattice site is:

p({+}) = eµh/kBT (+1)

eµh/kBT (+1) + eµh/kBT (−1)
, (3.9)

and the probability of a spin pointing down on a lattice site is

p({−}) = eµh/kBT (−1)

eµh/kBT (+1) + eµh/kBT (−1)
. (3.10)

The expectation value of a spin is:

⟨si⟩ = (+1)p({+}) + (−1)p({−}) = tanh

(
µh

kBT

)
, (3.11)
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and given that the spins are identical then

⟨si⟩ =M = tanh

(
µh

kBT

)
, (3.12)

is the magnetization order parameter.

3.2.2. The Interacting Ising Model (Mean Field Theory)

Herein, we will work in a zero magnetic field. For the case of interacting spins,

J ̸= 0, and the partition function is:

Z =
∑

s1=±1

∑
s2±1

· · ·
∑

sN=±1

eJ/kBT
∑

⟨i,j⟩ sisj . (3.13)

Notice, we cannot factorize the partition function into individual terms, like in Equa-

tion 3.6, because each spin si is coupled to its neighbors. One well-known approxi-

mation to deal with this situation is mean-field theory.

Mean-field theory is an approximation that ignores correlations amongst neigh-

boring spins and assumes that spins fluctuate independently with the same statistical

distribution [139]. In essence, it assumes:

⟨H⟩ = −J
∑
⟨i,j⟩

⟨sisj⟩ ≈ −J
∑
⟨i,j⟩

⟨si⟩⟨sj⟩. (3.14)

Moreover, ⟨si⟩ = ⟨sj⟩ =M . Thus, the mean-field theory interaction energy is:

H ≈ −1

2
NJqM2, (3.15)

where q is the coordination number which depends on lattice type and problem di-

mension. The free energy, F , can be calculated as a function of magnetization. It
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Figure 3.1: Free energy of Ising Model with Interacting J ̸= 0 and µh/kBT = 0.

is:

F

NkBT
= −

(
Jq

2kBT

)
M2 −

(
µh

kBT

)
M

+

(
1 +M

2

)
log

(
1 +M

2

)
+

(
1−M

2

)
log

(
1−M

2

)
.

(3.16)

This free energy as a function of M is plotted in Figure 3.1. At high temperatures,

Jq/kBT is small, and the F upward-facing parabola (blue curve) has a minimum of

M = 0. In this state, the system has no magnetic order; M = 0, and the system is

in the paramagnetic phase. As the temperature decreases, the parabola gets flatter
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(orange curve), and the second derivative goes to zero. As the temperature continues

to decrease (green curve), two minima appear of negative and positive values of M .

Here, the spins do not have a preference of whether they point up or down, and the

system will randomly choose one or the other minima. This state, with a finite value

of M , is the ferromagnetic phase. The temperature for the phase transition at which

the systems change from the paramagnetic phase to the ferromagnetic phase is called

the critical temperature. The critical temperature can be acquired by taking the

second derivative of Equation 3.16 at M = 0, as noted in Chapter 1; therefore the

critical temperature is Tc = Jq/kBT .

3.3. Number of Similar Bonds: A Useful Way to Character-

ize Local Antiferromagnetic, Paramagnetic, and Ferromag-

netic Order

The magnetization, M , is a common order parameter for the Ising model systems,

and it is natural for phases with a positive nearest neighbor coupling constant. Our

research, however, deals with Ising spins on a triangular lattice in the antiferromag-

netic, paramagnetic, and ferromagnetic regimes. Therefore, a measurement of order

that spans these phases is desirable. One quantity that is typically used to charac-

terize local antiferromagnetic order [59], but can also characterize paramagnetic and

ferromagnetic order, is the number of similar nearest neighbor bonds, ⟨Ns⟩. Analyti-

cal expressions for ⟨Ns⟩ in these regimes, on a triangular lattice, were first derived by

Wannier in [167] and later revised in [168]. Figure 3.2 shows up/down configurations

of a particle and its six nearest neighbors, along with an index indicating the number

of similar bonds. Due to rotational symmetry, thirteen distinct structures arise.

When the spins are very weakly interacting, we expect ⟨Ns⟩ ≈ 3. With stronger
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Figure 3.2: Configurations of a particle and its nearest neighbors, with the index
indicating the number of similar bonds. Due to rotational and inversion symmetry,
13 distinct configurations arise.

coupling, however, the behavior is different for antiferromagnetic (J < 0) versus

ferromagnetic interactions (J > 0). Frustrated antiferromagnetic systems on a fixed

(ideal) triangular lattice, as well as on a triangular lattice that can mechanically

deform, will have 2 ≤ ⟨Ns⟩ ≲ 3. As the temperature approaches zero, the frustrated

antiferromagnet without lattice distortion will have ⟨Ns⟩ close to 2; for lattices that

mechanical distort, well-known stripe and zigzag configurations arise, and ⟨Ns⟩ will

also be close to 2 [59, 142, 143].

In this model with zero magnetic field, the mean number of similar bonds, ⟨Ns⟩,

is related to the mean energy per site in the system, ⟨Ei⟩.

⟨Ei⟩ = (3− ⟨Ns⟩)J. (3.17)
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(a)

(b)

Figure 3.3: Wannier’s solution to Ising model on a triangular lattice. (Note J is
defined here differently than Wannier. For Wannier, J is the coupling energy re-
quired to turn over one pair of spins from parallel to anti-parallel, whereas that is
2J for this work.) (a) Energy per lattice site as a function of J for both J > 0
(ferromagnetic/paramagnetic) and J < 0 (antiferromagnetic). (b) Mean number of
similar bonds per lattice site Ns as a function of J/kBT for both J > 0 (ferromag-
netic/paramagnetic) and J < 0 (antiferromagnetic).
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Notice, if J > 0 and the sample is strongly ferromagnetic, then ⟨Ns⟩ = 6 and ⟨Ei⟩ =

−3J . On the other hand, if J < 0 and the sample is strongly antiferromagnetic and

frustrated, then ⟨Ns⟩ = 2 and ⟨Ei⟩ = |J | (see Figure 3.3a). The relationship between

Ns and βJ for the triangular lattice is shown in Figure 3.3b. The results in the

figure show that the Curie point (ferromagnetic transition) occurs at approximately

βJ ≈ 0.275, as expected from mean-field calculations [3, 46] on a triangular lattice.

Another useful variable to characterize these systems is the variance of Ns. Equa-

tion 3.17 establishes a relationship that can be employed to compute the variance of

Ns. The variance of Ns is defined in the standard way, i.e.,

(∆Ns)
2 ≡ ⟨N2

s ⟩ − ⟨Ns⟩2, (3.18)

and it is explicitly related to the variance of E. Since E = (3−Ns)J ,

(∆Ns)
2 =

1

J2
(∆E2). (3.19)

Therefore, the fluctuation-dissipation theorem can be used to calculate the vari-

ance of the number of similar bonds [50]:

(∆Ns)
2 =

1

J2

(
kBT

2d⟨E⟩
dT

)
, (3.20)

which can be broken up into:

(∆Ns)
2 =

kBT
2

J2

(
d⟨E⟩
d⟨Ns⟩

)(
d⟨Ns⟩
dT

)
, (3.21)
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where d⟨Ns⟩/dT = −J . Therefore,

(∆Ns)
2 =

−kBT 2

J

(
d⟨Ns⟩
dT

)
. (3.22)

We know from Wannier’s calculation how ⟨Ns⟩ varies with temperature. Thus we

can readily compute the variance of Ns. Some care must be taken in using (or blindly

applying) Wannier’s results; in Wannier’s derivation, the total number of bonds due to

lattice sites is 3N because that derivation was in the context of triangular plaquettes.

The experiments and theory in our work consider hexagonal plaquettes. Therefore

the total number of bonds in our reference system is 6N , and ⟨Ns⟩ needs to be reduced

by a factor of two to account for double counting. Thus, the final expression for the

variance of Ns is:

(∆Ns)
2 =

−kBT 2

2J

d⟨Ns⟩
dT

. (3.23)

Utilizing this expression, the variance of Ns can be numerically calculated and is

shown in Figure 3.4.

3.4. Theoretical Model for the Colloidal Suspensions

3.4.1. Background

We will first introduce a simple model (quasi-1D) that serves to clarify the main

physical concepts associated with the experiments, especially how the Ising coupling

constant varies with depletion interaction strength. Then, more realistic models are

developed. These more realistic models are fully three-dimensional (3D), and they

account for nearest-neighbor interactions; they facilitate a more quantitative compar-

ison to the experiment. Phase (or state) diagrams are developed based on the more

realistic theory. Additionally, the inclusion of particle depletion interactions with the
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wall is investigated using the more realistic model.

The first experimental work explicitly demonstrating the analogy between col-

loidal systems and the Ising model, i.e., in this case, the frustrated antiferromagnet,

was carried out by Han et al. 2008 [59]. In that paper, they created the frustrated an-

tiferromagnet, and they reported static and dynamic properties of the geometrically

frustrated system containing densely packed spheres on a triangular lattice sand-

wiched between parallel walls. The experiments utilized diameter-tunable microgel

spheres (PNIPAM). They showed with experiment (and simulation) that the single

particle spin-flip dynamics are correlated with in-plane lattice distortions, which re-

lieves the geometric frustration. The frustration relief produced unique ground states

of zigzags and stripes with subextensive entropy; this ground state was different from

predictions for ground states of the Ising model antiferromagnet on a fixed triangular

Figure 3.4: The variance of the number of similar bonds as a function of the number
of similar bonds.
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lattice, with extensive entropy [59]. A year later, Shokef and Lubensky [142] further

studied this analogy in theoretical work, explicitly calculating the free-volume-based

Ising coupling constant. They showed that zigzag stripes are favored, and that lattice

distortion partially removes the Ising model ground-state degeneracy.

This dissertation again utilizes the buckled colloidal monolayer system, but here

we augment the system by adding in the possibility of attractive depletion inter-

actions, and experimentally we employ hard polystyrene spheres, rather than the

soft microgel spheres whose diameters were temperature-tunable. The new system,

however, enables tuning the sign and magnitude of the Ising spin coupling constant

in-situ via the introduction of depletion interactions which permit the nearest neigh-

bor “spin” interactions to vary from antiferromagnetic to para- and ferromagnetic.

The theoretical models discussed herein were developed to elucidate these effects.

3.4.2. Introduction to the Simple Model in Quasi-1D

The experiments employ a system of hard-sphere colloidal particles arranged in the

xy-plane (the transverse plane) on a triangular lattice with in-plane nearest-neighbor

spacing, L. The particles have diameter D (see Figure 3.5). The particles are also

confined vertically, by two walls, i.e., particles are confined in the out-of-plane z-

direction; the walls have separation H (the sample cell thickness is H). Typically,

the thickness-to-diameter ratio, H/D, is ∼ 1.5 or less, and the volume fraction of the

system is nearly closed-packed so that L/D, is close to unity. Here, we first develop a

model to describe the colloidal system in the absence of depletion interactions; then,

we will add small micellar depletants and describe new features that arise.

With only hard-core repulsive interactions between spheres, and between spheres

and walls, the particles seek to maximize their free volume (translational entropy).

As a result, neighboring particles tend to move out-of-plane and buckle in opposite
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directions. Nearest neighbors behave like Ising spins interacting antiferromagnetically

with a coupling constant, J . Specifically, the interaction energy between neighboring

particles (i and j) is −Jsisj, where we denote the z-components of the spine of

particles i and j as si and sj, and J > 0. For the hard-sphere colloidal system,

simple theoretical modeling shows that J depends quantitatively on H/D and L/D

[59, 142, 143].

In what follows, we generalize the original theoretical approach [142, 143] to in-

clude interparticle interactions, i.e., interactions beyond that of hard spheres. Specif-

ically, we show how the introduction of attractive short-range interactions between

spheres due to added depletants can cause the sign of J to change. Therefore, we

show how the model colloidal system, containing hard spheres plus depletants in sus-

pension, can be manipulated to evolve from a frustrated colloidal antiferromagnet to

a colloidal paramagnet/ferromagnet as a function of increasing depletion attraction

strength.

Our simple approach builds on the quasi-1D theoretical model of Shokef and

coworkers for confined and frustrated colloidal Ising antiferromagnets on a triangular

lattice [142, 143]. This quasi-1D model focuses on three particles in the hexagonal cell

(see collinear particles enclosed by the red rectangle in Figure 3.5a); it computes the

relative free area (or free volume) of the central particle in its up state versus its down

state. More generally, the microstate of the ith particle is specified by its position in

the xz -plane, (xi, zi), and the system microstate involves all particles (1 ≤ i ≤ N)

on the triangular lattice.

The problem is next transformed into a version with corresponding Ising-like con-

figurations. Each particle is specified by the z-component of its “spin” {si} where

si = ±1. Here, x describes the in-plane position of the central particle (x = 0 cor-
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responds to the geometric center of the central particle when it is located midway

between the outer particles), and z is the out-of-plane position of the central particle

constrained by walls at z = 0 and z = H. When a particle is above the vertical center

of the cell, z = H/2, it is considered to be in the spin-up state (si = +1); when it is

below the cell center, it is considered to be in the spin-down state (si = −1). Notice

that if the central particle’s two outer neighbors are in opposite spin states, {−−+}

or {− + +}, then the accessible areas associated with the central particle being up

versus down are equal. However, when two neighbors are in the same state, for ex-

ample, both spin-down, then the central particle has more free area when buckled up

{−+−} (shaded yellow in Figure 3.5b) versus buckled down {−−−} (shaded green

in Figure 3.5c).

Shokef and Lubensky [142] showed that this hard-sphere system has an effective

antiferromagnetic interaction (J < 0), with

J

kBT
= −1

4
ln

(
A+

A−

)
< 0. (3.24)

Here kB is the Boltzmann constant, T is temperature, and A+ (A−) is the free area

available to the central particle when it resides in a vertical plane opposite from (same

as) its two neighbors, see Figure 3.5d.

Additionally, Shokef and Lubensky [142] showed explicitly how the coupling, J ,

can be changed in magnitude by modifying system geometry (i.e., H, D, and L).

Although approximate, this simple antiferromagnetic Ising model largely accounts for

observed phenomena [59]. If we permit lattice distortion, the model and its variants

can also elucidate the experimentally observed stripe and zigzag spin configurations.

We now extend the quasi-1D model to describe the more general situation with
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Figure 3.5: Quasi-1D model. (a) (Top-down view) A particle and its nearest neigh-
bors in quasi-2D. The red rectangular outlines the central particle and two equally
spaced neighbors in quasi-1D. (b, c) (Side view) Correspondence between Ising spins
and particle z-position. In (b), the central particle is buckled out-of-plane in the
vertical direction; {− + −} describes the configuration with an “up” central particle
spin state. In (c), {−−−} describes the configuration with a “down” central particle
spin state. (d) (Side view) Free areas associated with the “up” and “down” states of
the central particle. The central particle’s free area, A+ (A−), is shown in yellow
(green) when buckled up (down). The edge of the lower (upper) wall is at z = 0
(z = H).The black dashed line at z = H/2 separates up/down free areas. Dark blue
circles represent the cores of the central particle’s nearest neighbors (with center-to-
center separation, 2L). Light-blue circles represent areas inaccessible to the geometric
center of the central particle. x = 0 is the center of the central particle located mid-
way between the outer particles. (e) (Side view) Free areas associated with the “up”
and “down” states of the central particle. The central particle’s effective area, Aeff

+

(Aeff
− ), is shown in yellow (green) when buckled up (down).
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interparticle interactions different from that of hard spheres. For clarity, the analysis

will focus on the case where both outer neighbors are again in spin-down states (like

Figure 3.5d). Consider the probability for the central particle to be either spin-up

or spin-down. The probability of the central particle being in a particular “spin”

configuration is:

p({si};H,D,L) = Z({si};H,D,L)/Z. (3.25)

Z({+};H,D,L) is the integral over the Boltzmann weight of the central particle in

the up state. Z({−};H,D,L) is the integral over the Boltzmann weight of the down

state. The “total” partition function is

Z ≡ Z({+};H,D,L) + Z({−};H,D,L) (3.26)

and is needed for normalization.

More explicitly, the numerators in the probability expressions above are:

Z({+}; H,D,L) = C
H−D/2∫
H/2

2

xmax(z)∫
0

e−U(x,z)/kBT dx dz; (3.27)

Z({−}; H,D,L) = C
H/2∫
D

2

xmax(z)∫
0

e−U(x,z)/kBT dx dz, (3.28)

where

C =
1

h2

∫
d2p exp

(
−|p|2/2mkBT

)
=

(
2mkBT

h2

)
. (3.29)

Here h is Planck’s constant, p is the momentum, and m is the mass of the particle.

Note, the constant C due to the momentum integral cancels in our calculations.

Notice that the integrand, in both Equations 3.27 and 3.28 contains a Boltzmann
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factor using the interparticle potential, U(x, z), between the central particle and its

neighbors. In contrast to the hard-sphere case, these integrands can be non-zero even

when the central particle does not physically overlap with neighboring particles (or

walls). The upper limit, xmax(z), represents the maximum in-plane displacement that

particles can have such that they do not overlap with their neighbors; it is a function

of the out-of-plane (vertical) position, z.

In the hard-sphere case (without depletants), Equation 3.25 involves ratios of true

areas of integration where particles do not overlap. U(x, z) = 0 in these regions.

Integration gives:

Z({+};H,D,L)/Z = A+/Atot; (3.30)

Z({−};H,D,L)/Z = A−/Atot. (3.31)

Here, Atot is the total free area available to the central particle.

The Ising coupling constant J is then determined by the ratio of the two accessible

free areas:
p({+})
p({−})

=
e−2βJ

e2βJ
=
A+

A−
. (3.32)

Rearrangement of this relationship gives the result noted in Equation 3.24.

On the other hand, if we add depletants and thereby introduce short-range attrac-

tions between the spheres, then the numerical values of the Boltzmann weights will

change (and will no longer be either zero or unity). For example, in our experiments,

we introduce nanometer-sized rod-like micelles into the suspension. These micelles

behave like cylindrically shaped depletants and induce an attractive short-range in-

teraction between particles that depends on depletant concentration and shape (see

Figure 3.6). The depth of the corresponding attractive depletion interaction poten-
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tial is an increasing function of the depletant volume-fraction ϕd, which is roughly

constant; the depth is also an increasing function of the cylinder major axis length,

ℓ, which can be controlled by temperature.

The analytical form of this depletion potential has been worked out [120] and can

be written the following form.

Uattr(r; ℓ, d, R, ϕd)

kBT
= ϕd

Rℓ

d2
Q(r, ℓ, d). (3.33)

The function Q(r, ℓ, d) is given in Equations 2.13 and 2.14. Uattr(r; ℓ, d, R, ϕd) is

infinite when the particles touch, zero at long range, and negative when the particle

surfaces are separated by a distance of less than ℓ. Thus, in Equations 3.27 and

3.28, U(x, z) is no longer zero throughout the whole region where particles do not

physically overlap. The integrals will no longer give true physical areas.

As a result, we obtain a modified version of Equation 3.24 that relates J to a ratio

of effective areas defined by Equations 3.27 and 3.28:

J

kBT
= −1

4
ln

(
Aeff

+

Aeff
−

)
. (3.34)

The ratio of effective areas is derived from the integrands weighted by the deple-

tion potential. In practice, at low temperature and relatively low volume-fraction

(Figure 3.6a), the rods are very short and interaction between the large particles

(with diameter D) remain like that of a hard-sphere: Aeff
+ /Aeff

− ≈ A+/A− > 1 (Fig-

ure 3.5d), and J < 0; the system is antiferromagnetic at low temperature when the

depletion attraction is negligible.

However, when the sample temperature increases (Figure 3.6b), the rod length
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Figure 3.6: Schematic illustrating the depletion interaction between colloidal particles
of radius R = D/2, in a suspension of rod-like micelles with major axis length ℓ, minor
axis length d, and fixed micelle volume fraction ϕd. The depletion attraction effect
arises because the micelle centers cannot reside in the regions of excluded volume
(light purple regions surrounding the colloidal particles). (a) At low temperatures, ℓ
and d are approximately equal, the micelles are nearly spherical, and the light purple
regions of excluded volume are very thin. (b) At higher temperatures, ℓ increases,
but d does not change. The light purple regions of excluded volume increase relative
to (a); moreover, the pair-potential depth at contact also increases relative to (a).

increases, the interparticle potential well depth at short-range increases, and the

range of the potential increases. This effect causes the ratio of the effective area to

vary. At high temperature, the ratio Aeff
+ /Aeff

− < 1 (Figure 3.5e), and the Ising

coupling constant J > 0 . Thus, the sign of the effective Ising coupling constant

can be changed from negative to positive values simply by increasing the depletion

interaction strength, which in turn can be achieved by changing temperature.

In Figure 3.7, we display the results of numerical calculations that demonstrate

these effects based on the simple quasi-1D model with the depletion interaction due

to cylindrical/ellipsoidal micelles. At low temperature and volume fraction, when

the depletants are nanometer-sized spheres, Aeff
+ gives a 69% probability of being

buckled up and a 31% probability of being buckled down; J/kBT < 0. At slightly

higher temperatures with the same volume fraction, the depletants become more rod-

like, and the effective area ratios become comparable; J/kBT ≈ 0. Finally, when the

micelles become long rods at high temperatures, the probability of the central particle
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Figure 3.7: Results of simple model calculations illustrate the temperature-dependent
relationship between the Ising coupling constant and the ratio of effective areas. The
yellow (green) region represents the effective area, Boltzmann-weighted, for a buckled-
up (buckled-down) central particle. From left to right, ℓ is 4.3, 16.3, and 20 nm,
respectively. For the calculations, we assumed a depletant volume fraction, ϕ =
0.0049, a depletant cylinder minor axis length, d = 4.3, a colloidal particle diameter,
D=1.0 µm, and a ratio of lattice spacing to particle diameter, L/D=1.01.

buckling up is 34%, and buckling down is 66%; J/kBT > 0. The model calculations

suggest that the introduction of depletion attraction facilitates variation of the Ising

coupling constant from negative to positive values and passes through zero.

3.4.3. Realistic Model in Quasi-2D

In quasi-two-dimensions (quasi-2D), the general approach used in subsection 3.4.2

can be used but requires some modifications. In quasi-2D, the microstate of each

particle is described by the positions {ρi, θi, zi} in cylindrical coordinates. First, we

consider the simplest case, where the central particle is either up or down; then we

will discuss the approach for including nearest neighbors.
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In quasi-2D, for the case of spin-down nearest neighbors, the geometry is changed

such that the central particle has six spin-down nearest-neighbors (all particles in

Figure 3.5a). The quasi-2D geometry adds an extra dimension, and the effective

areas become a ratio of effective volumes, changing Equations 3.27 and 3.28 to:

Z({+};H,D,L) = C
H−D/2∫
H/2

2π∫
0

ρmax(θ,z)∫
0

I(ρ, θ, z) ρ dρ dθ dz, (3.35)

and

Z({−};H,D,L) = C
H/2∫
D

2π∫
0

ρmax(θ,z)∫
0

I(ρ, θ, z) ρ dρ dθ dz, (3.36)

where

C =
1

h2

∫
d3p exp

(
−|p|2/2mkBT

)
=

(
2mkBT

h2

)3/2

. (3.37)

Here h is Planck’s constant, p is the momentum, and m is the mass of the particle.

As explained in the quasi-1D discussion, the constant C, from the integrals over

momentum, cancels in all relevant calculations which involve ratios. The integrand,

I(ρ, θ, z) = exp

[
−

6∑
i

Uattr(ri(ρ, θ, z))/kBT

]
, (3.38)

includes the depletion potential, Uattr(r; ℓ, d, R, ϕ)/kBT , from Equation 3.33, and ri is

the distance from the central particle’s center to the ith neighboring particle center.

Additionally, Equation 3.34 changes and can be expressed in terms of a ratio of

effective volumes that will in general depend on the nearest neighbor configuration:
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Figure 3.8: Areas of the central particle when it is buckled up (orange) versus when
it is buckled down (blue). Yellow circles denote neighbors that are buckled up and
green circles denote neighbors that are buckled down.
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Figure 3.9: Integral ratio lnV c/ lnV 1, where lnV c = ln
(
V eff
+ /V eff

−

)
of the c-th

configurations and lnV 1 is the logarithm ratio of the first configuration (i.e., all
neighbors down) that normalizes lnV c. ∆Jsisj represents the Ising energy difference
of a configuration when the central particle is buckled up versus down.
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J

kBT
= − 1

12
ln

(
V eff
+

V eff
−

)
. (3.39)

Figure 3.8 shows the thirteen distinct configurations of nearest-neighbor particles.

An xy-projection of the central particle’s free volume in the figure quantifies this

free volume when the central particle is buckled up (in orange) and when the central

particle is buckled down (blue) for the various configurations; nearest-neighbors are

indicated as yellow (buckled up) and green circles (buckled down). These distinct

configurations, with different effective volume ratios, suggest that we must modify

our original assumption (in our quasi-1D model) that the estimated βJ should be the

ratio of up/down volumes with all the neighbors are down (i.e., configuration 1 in

Figure 3.8).

Figure 3.9, shows the ratio of of lnV c/ lnV 1, where lnV c = ln
(
V eff
+ /V eff

−

)
of

the c-th configurations; lnV 1 is the logarithm ratio of the first configuration (i.e.,

all neighbors down) that normalizes lnV c. Figure 3.9 shows that, in general, the

ratios of the integrals for the various neighbor configurations are generally different.

Our estimate of the average Ising coupling constant should account for (i.e., suitably

average over) these differences.

So far we have only considered the phase space of a single particle. To make

the model more realistic, the free energy is computed from the product of the phase

space of the central particle and the phase space of its’ first nearest neighbors. This

scheme requires averaging over all possible up/down configurations of the first and

the second nearest neighbors of the central particle (Figure 3.10). The second nearest

neighbors are included because the energy of the first nearest neighbors depends on

the configuration of their own neighbors. The approach is outlined below.
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(a)

(d)

(b) (c)

(e) (f)

Figure 3.10: Lattice of particles included in Section 3.4.3 (i.e., central particle and
first and second nearest neighbors of the central particle). Dashed lines indicate
the local configuration of the first nearest-neighbors: (a) First nearest-neighbor. (b)
Second nearest-neighbor. (c) Third nearest-neighbor. (d) Fourth nearest-neighbor.
(e) Fifth nearest-neighbor. (f) Sixth nearest-neighbor. Note that the energy of the
first nearest-neighbors depends on the configuration of the second nearest-neighbors,
thus, they are included in our calculation.

We first write the single particle partition function as a three-dimensional integral:

Zi = Z(si;Ni) =

∫
V (si;Ni)

e−βU(r⃗;Ni)dr⃗, (3.40)

where Ni is the set of spins of the six nearest neighbors of particle i, V (si;Ni) is the

volume “caged” by the nearest neighbors of particle i within which particle i is free to

move; the volume is restricted to z > H/2 (z ≤ H/2) if si = +1 (si = −1). U(r⃗;Ni)

is the potential felt by particle i at position r⃗ with respect to its’ six neighbors and

the two walls. To simplify this integral we make the approximation that particle i’s

nearest neighbors remain exactly on their transverse lattice positions and in their

vertical position, i.e., z = H −D/2 or z = D/2, depending, respectively, on whether
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their spins are +1 or −1.

The partition function for a particle and its nearest neighbors can be written as

a product over single particle partition functions:

Ztot(S
i
k) = Zi

6∏
j=1

Zj, (3.41)

where Si
k is shorthand for the spin configuration of a central particle, its nearest

neighbors, and their nearest neighbors (a total of 19 spins); note, in this equation, i

denotes whether the central particle is spin-up or spin-down. The index k identifies

any of the 218 = 262, 144 possible spin configurations of the 18 nearest and next-

nearest neighbor particles. The total free energy of this 7-particle cluster is:

F (Si
k) = −kBT lnZtot(S

i
k). (3.42)

Our goal is to describe the system (the 7-particle cluster, which includes the effects

of its next-nearest neighbors) with an Ising model and to choose the optimal J such

that the Ising energy term,

E(Si
k; J) ≡ −J

∑
⟨ij⟩

sisj, (3.43)

provides a good approximation for F (Si
k) up to a constant independent of spin con-

figuration. (Note, in the sum on the right-hand side above, the i and j are indices

for particular spins.) To accomplish this goal, it suffices to confirm that our Ising

energy with optimized J accurately captures the energy differences between any two

19-particle spin states wherein only the central particle has flipped:
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±±±±±±±±±±±±±±±±±±

ΔF = 1.709
Δsisj = −12
Jk = −0.142

±±±±±±±±±±±±±±±±±±

ΔF = −0.262
Δsisj = 4
Jk = −0.065

±±±±±±±±±±±±±±±±±±

ΔF = −0.489
Δsisj = 4
Jk = −0.122

±±±±±±±±±±±±±±±±±±

ΔF = 0.586
Δsisj = −4
Jk = −0.147

Figure 3.11: Example of four configurations out of the 218 possible configurations
when H/D=1.3, L/D = 1.01, and ℓ = 5nm. ∆F is the resultant free energy change
due to flipping the central particle from up to down. The central particle is represented
by the open circle with a ± center (to indicate that it can have a +1 or −1 spin).
Neighbor spins that are green (yellow) filled circles, indicate a spin value of −1 (+1).
∆sisj is the difference in the Ising spin product due to flipping the central particle from
up to down. Jk is the coupling for that k configuration. Note that the contributions
of ∆sisj only come from nearest-neighbors and not second nearest-neighbors.

E(S+
k ; J)− E(S−

k ; J) ≈ F (S+
k )− F (S−

k ). (3.44)

Here S+
k and S−

k denote 19 particle spin configurations in which the central particle

is + or − (points up or down), and the remaining 18 particles are fixed.

Our calculation reduces to finding a value of J that best satisfies Equation 3.44

for all 218 possible values of k. For each k there is an optimal Jk, which we determine

from:

Jk =
F (S+

k )− F (S−
k )∑

⟨ij⟩ sisj

∣∣∣∣
S+
k

−
∑

⟨ij⟩ sisj

∣∣∣∣
S−
k

=
∆F

∆sisj
. (3.45)

To compute the optimal J for the whole system, we average over all values of k
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(i.e., over all possible configurations of the 18 neighbors).

J =

∑
k Jkwk∑
k wk

, (3.46)

where

wk ≡ Z(S+
k ) + Z(S−

k ) (3.47)

is the weight for observing a particular nearest neighbor configuration k; it accounts

for cases where the center particle is up and down. This approach (Equation 3.46)

incorporates the relative probability of observing each nearest neighbor spin config-

uration. Figure 3.11 shows four distinct example configurations, along with their

calculated free energy difference (∆F ), their difference (∆sisj) that is defined in the

denominator of Equation 3.45 and the estimated coupling (Jk) due to flipping the

central particle (from the computation).

Note, the above sums exclude k that correspond to spin states where three of the

six central bonds are frustrated. For these nearest neighbor configurations, there is no

energy difference upon a flip of the central particle, and the denominator of Equation

3.45 is zero.

3.4.4. Model Theory Results

Figure 3.12 shows predictions of our comprehensive quasi-2D model as a function

of depletion attraction strength (βU), and the diameter-normalized lattice spacing

(L/D) and cell thickness (H/D). Note, βUmin increases from left to right in the

plot, since both the magnitude of the depletion attraction and temperature increase

moving left to right horizontally. The color scale in these state diagrams corresponds

to different regimes of the predicted Ising coupling constant. The blue region corre-

sponds to the frustrated antiferromagnetic (AF) state wherein −3 < βJ < 0; beige
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corresponds to paramagnetic states (P) wherein 0 < βJ < 0.275, and red corresponds

to ferromagnetic states (F) where βJ ≥ 0.275 [3, 46]. Generally, the system starts

in the AF region at low temperatures, where the depletion interaction is minimal or

at least small. It evolves from AF (J < 0) to P (J > 0) as the magnitude of the

attractive depletion interaction increases. We also see that for fixed H/D, a larger

depletion attraction is required to reach the (AF-P) crossover as L/D increases, and

for fixed L/D, a larger depletion attraction is required to reach the (AF-P) crossover

as H/D increases. Qualitatively, these trends can be understood to be a consequence
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P
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−3.000

0.000

0.275

3.000

�J

P-F with wall
AF-P with wall

(a)

(b)

Figure 3.12: (a) Quasi-2D Phase Diagrams for H/D=1.2, 1.3, 1.55, respectively. Blue
color corresponds to the antiferromagnetic region (AF), beige to the paramagnetic
region (P), and red to the ferromagnetic region (F). Red and blue dashed lines indicate
where the transitions occur when the depletion attractions to the wall are included.
The dashed blue line is the wall-induced shift for the AF-P transition, and the red
dashed line is the shift for the P-F transition. The white dashed line indicates the
fixed L/D for which the curves in (b) are obtained. (b) The number of similar bonds,
⟨Ns⟩ and βJ plotted as a function of depletion attraction strength, βUmin at fixed
L/D = 1.01. The black dashed (solid) lines indicate the behavior with wall attractions
(without wall attractions).
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of more room for particles to move, i.e., fractionally less close particle contact (where

the depletion interaction is important), as L/D and H/D increase.

3.4.5. Wall Interactions

The presence of the wall introduces small energetic changes, which can affect

trends. For the simple dilute-system models, the particle-wall depletion effect is ap-

proximately twice as strong as the depletion between two particles in suspension

[33, 34, 73, 86, 121]. The same will be true for rod-like depletants of the present

experiment. This effect further modifies the effective free volumes (V eff
+ /V eff

− ) asso-

ciated with buckling up versus down; for example, when all of the nearest neighbors

are on the top wall, then the central particle will have access to a different patch of

the physical area on the top wall compared to the bottom wall. This wall-induced be-

havior tends to enhance the primary depletion effect discussed in Sec.3.4.2 (see Figure

3.13). It shifts the crossover condition from one magnetic state to another slightly

(see blue and red dashed lines in Figure 3.12). Specifically, for the case where all of

the central particle’s nearest neighbors are up, the depletion effect is stronger for the

particle on the top wall than on the bottom. Therefore, the coupling constant βJ

becomes more positive. As a result, the AF-P crossover shifts to the left in the state

diagram, indicating the AF-P transition will occur at lower βU (lower temperature).

Importantly, since the state diagram depends on the free energy difference, it is

essentially unchanged by the additional depletion wall attraction.

However, the energy barrier height for a particle to flip from one wall to another

can become much larger due to the wall interactions. Thus, the system dynamics

become slower with increasing attraction strength. This phenomena has significant

practical consequences, which we will discuss in Chapter 4.
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Figure 3.13: Quasi-1D model computations that illustrate the relationship between
the Ising coupling constant and the weighted effective area ratios (central particle
occupation probability). The yellow region corresponds to the weighted effective area
when the central particle is buckled up, and the green region corresponds to the
weighted effective area when the central particle is buckled down. The three panels
correspond to different cylindrical depletant lengths (depletion attraction strength).
From left to right, ℓ is 4.3, 16.3, and 20 nm, respectively. For these calculations,
the depletant concentration, ϕ = 0.0049, the depletant minor axis length, d = 4.3,
the colloidal particle diameter D=1.0 µm, and the ratio of lattice spacing to particle
diameter, L/D=1.01.
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3.4.6. Numerical Calculations

In this subsection, we describe the numerical methods we employed to carry out

the calculations discussed above. We have included this separated discussion of these

numerical calculations, because it was challenging, and the details are important.

To calculate the Ising coupling constant, J/kBT , numerical integration of Z({+}),

Z({−}), and Z is required. To this end, we developed custom Python code with the

versatility to calculate integrals in either quasi-1D or quasi-2D. The Boltzmann weight

utilizes the depletion potential, explicitly defined in Equation 2.12, in its exponent;

the depletion potential depends on surfactant volume fraction (ϕd), micelle rod-length

(ℓ) and diameter (d), etc. The integration also depends on the geometric parameters

H, L, and D.

The calculations are performed in cylindrical coordinates, which we found helps

with numerical stability. Figure 3.14 provides schematics of the integration geometry.

The coordinates (ρ, θ, z) specify the position of the center of the central particle.

The vertical bounds for its motion are z ∈ [D/2, H − D/2] (see Figure 3.14a,b),

and the azimuthal bounds are θ ∈ [0, 2π] (see Figure 3.14c). The radial bounds

are ρ ∈ [0, ρmax(θ, z)], where ρmax (Figure 3.14d) is computed from a ray-sphere

intersection calculation.

Algorithmically, the numerical integrals are evaluated by performing adaptive in-

tegration along ρ for each (θ, z) on a two-dimensional grid with uniform spacing in dθ

and dz. For the ρ integrals, we use a quad algorithm [161], which samples more points

in regions where the integrand is changing faster. Note, we tried more straightforward

methods, such as a three-dimensional grid or Monte Carlo sampling, and we found

that these methods cannot ensure time-efficient convergence, because the depletion
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Figure 3.14: Theory calculation schematics. (a) The vertical bounds for its motion
when the central particle is in the top half of the cell are highlighted in yellow. (b)
The vertical bounds for its motion when the central particle is in the lower half of
the cell are highlighted in green. (c) Azimuthal bounds. (d) Radial bounds.

attraction strength varies rapidly very close to the integration boundaries.

We demonstrate the numerical convergence of these integrals empirically by eval-

uating all thirteen integrals for representative values of {H,L,D, ℓ} using a range of

grid densities N = Nθ = Nz; we carried this out with and without the depletion-

induced wall forces. The maximum grid density tested was Nθ = Nz = 360. The

difference between the test integral and the converged integral, f(N) − ftrue, should

go to zero if the process is converging. Therefore we check f(N) − f(N360), taking

f(N360) to be the approximately converged integral. The difference approaches zero
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Figure 3.15: Percent deviation of [f(N)− f(N360)]/f(N360) relative to nz and nθ.

as N approaches N360; therefore, we accept that (1) the integral is converging, and

(2) the error is no larger than ⟨|f(N240) − f(N360)|⟩. Figure 3.15 demonstrates that

the percent deviation [f(N) − f(N360)]/f(N360) approaches zero as N increases and

that the expected error for N ≳ 240 will be ≲ 0.1%.

3.5. Summary

This chapter introduced the basic concepts connecting the Ising model to the

buckled colloid experiments. The theory predicts a crossover behavior from antifer-

romagnetic to paramagnetic and ferromagnetic regimes as a function of temperature

(depletion attraction strength). The theory reveals that these crossovers occur due

to competition between the large-particle free volume effect, which favors oppositely

buckled neighbors, and the depletion attraction (which is a free volume effect for
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the depletants), which favors neighbors with the same buckling. In practice, there

is minimal or at least only a small depletion attraction at the lowest temperatures,

therefore the large-particle free volume effect is dominant at low temperatures. In

contrast, when the temperature is high, the depletion attraction dominates, leading

to a crossover from antiferromagnetic to paramagnetic/ferromagnetic regimes. These

interaction effects thus permit modulation of the effective Ising coupling constant

by using temperature to tune the depletion attraction strength. The model predicts

that cell thickness and lattice spacing also can significantly affect the system’s static

behavior. In the next section, we will compare the results of the realistic theory to

our experimental results, and we will measure the spin-flip dynamics of the system.

94



CHAPTER 4

Results

In this Chapter, we present and discuss our experimental results. We will assume

the reader is familiar with the major details of the experiments, presented in Chap-

ter 2, as well as the various theoretical models, presented in Chapter 3. Thus, in

this Chapter, we collect together the primary findings and connect them to theory

and experiment and discuss their limitations. The results will first focus on sample

structure (sample statics) in sections 4.1 and 4.2. Following that, we focus on sample

dynamics (sample spin-flip temporal autocorrelation functions) in section 4.3. Note,

although all of the results are given, the presentation makes a distinction between

the samples in the thinnest cells (smallest H/D) compared to the others; this is in

part because the thinnest cell samples should experience the smallest distortion of

the in-plane triangular lattice, which is expected to be approximated best by theory;

additionally, this sample spans both negative and positive coupling constant (J).

4.1. Static Structural Properties and Model Comparison

4.1.1. Experiments with the Smallest Wall-to-wall Separation

We first examine the buckled colloidal system under conditions where we expect

the free-volume modeling to be most accurate, i.e., for experiments with the smallest

H/D (Figure 4.1). In the lower-temperature range, the static structural properties

of this sample exhibit many of the anticipated features, notably a change in the sign

of the coupling coefficient. At higher temperatures, however, the large depletion

attraction to the sample walls introduces significant dynamic arrest, and therefore,

these samples at higher temperatures did not fully equilibrate, and therefore, reside
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(f)

21°C(a) (b) (c)23°C 25°C

27°C 29°C 31°C(d) (e)

Figure 4.1: Experimental images of the buckled monolayer of colloidal spheres with
tunable pair-potentials. Data is from samples with confinement thicknessH/D ∼ 1.23
and temperatures (a) 21, (b) 23, (c) 25, (d) 27, (e) 29, and (f) 31 ◦C. Images were
contrast-enhanced for visual clarity.

in metastable states.

In this subsection, we present and discuss findings about sample statics. These

are the primary experimental results. Later, we will discuss sample dynamics and

the behaviors of colloidal systems with larger H/D, which can deviate more from the

ideal scenario of a fixed in-plane triangular lattice.

Figure 4.1 shows the primary image data at all temperatures. Recall when the

spins are very weakly interacting, we expect ⟨Ns⟩ = 3. In the limit of stronger

coupling between spins, the behavior is different for antiferromagnetic (J < 0) versus

ferromagnetic interactions (J > 0). The frustrated antiferromagnetic systems will

generally exhibit 2 ≤ ⟨Ns⟩ ≲ 3. As the temperature approaches zero, the frustrated

antiferromagnet (both with and without lattice distortion) will have ⟨Ns⟩ close to 2.

For lattices that distort mechanically, well-known stripe and zigzag configurations will
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arise, which is different from expectations for lattices that do not distort; nevertheless,

samples exhibiting these phases will also have ⟨Ns⟩ close to 2 [59, 142, 143]. If

the coupling constant is positive (J > 0), then the spins prefer to align. For the

paramagnetic phase, we expect 3 ≲ ⟨Ns⟩ ≲ 5, and for the ferromagnetic phase, we

expect ⟨Ns⟩ ≳ 5 [167, 168].

Thus far, we have an experiment where we have obtained Ns as a function of

temperature T . Additionally, we have experimentally measured U(r) from our dilute

colloidal suspension (see Figure 2.10) where we fit a smooth monotonic function to the

minima of the pair-potentials to obtain Umin(T ) (see Figure 2.20b). This procedure

has allowed us to obtain Ns(Umin) for experimental data. From a theoretical perspec-

tive, we have used the depletion-theoretic Ut(r), Equation 2.12, in the same dynamic

range of experimental Umin(T) to predict βJ(Umin) from our quasi-2D realistic model

(see Section 3.4.3).

To compare experiment and theory together, we plot the relevant quantities from

our experiment Ns(Umin) with our theoretical predictions βJ(Umin) in Figure 4.2. To

combine them into a single plot, we use Wannier’s theory (Figure 3.3) to align the

vertical axis for Ns and βJ . The data (solid and open circles) represent experimental

measurements of ⟨Ns⟩. The solid line is derived from our realistic quasi-2D model with

particle-wall interactions (see Section 3.4.3). The solid black circles are derived from

experiments where the sample had the opportunity to fully equilibrate at lower tem-

peratures. The open circles are derived from experiments where the sample clearly did

not fully equilibrate due to strong particle-wall attraction at high temperatures. To

determine whether experiments are in equilibrium or non-equilibrium, we examined

sample dynamics (discussed in Section 4.3) at each temperature. If the single-particle

autocorrelation function relaxation time (τ) is less than the duration of the experi-
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Figure 4.2: Number of similar bonds, ⟨Ns⟩ and βJ versus depletion attraction
strength, βUmin for H/D ∼ 1.23. The black line is from our realistic model, us-
ing the predictions of our depletion model. βJ extracted from our quasi-2D model,
with parameters H/D = 1.2, L/D = 1.01, and ϕd = 0.0049. Circles are experimen-
tal data; solid black (open) circles indicate data from equilibrium (non-equilibrium)
samples.

ment (∼ 12 minutes), then we consider the sample to be in equilibrium; otherwise,

it is in non-equilibrium. For H/D ∼ 1.23, the system reaches non-equilibrium at

29 ◦C (see Figure 4.10a-b). The interplay between the dynamics, equilibrium, and

non-equilibrium will be discussed more in subsections 4.3.1 and 4.3.2.

Figure 4.2 shows that at low depletion attraction (low temperature), βUmin ≈

−1.2, the number of similar bonds ⟨Ns⟩ < 3 and βJ < 0. Thus, these samples

are clearly in the frustrated antiferromagnetic phase, as is evident qualitatively from
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the zigzag/stripe features in the images too. When the attraction is increased to

βUmin ≈ −2.4, then the number of similar bonds, ⟨Ns⟩ = 3.2, exceeds 3, and βJ > 0;

these data indicate the sample has left the antiferromagnetic regime and entered

the paramagnetic regime (Figure 4.1b). The experimental data shows that the Ising

coupling constant has transitioned from negative to positive values, consistent with

the model. The clustering of buckled-up or buckled-down particles in the experimental

images qualitatively confirms this observation of a transition to the paramagnetic

phases. At the highest attraction strengths where the depletion attraction is the

dominant interaction effect, βUmin ≈ −3.1 to −4.1, ⟨Ns⟩ ≈ 3.9 to 4.3 and βJ ≈ 0.19

to 0.23; in this case, the system is close to the paramagnetic-ferromagnetic crossover as

seen in Figure 4.1d-f. However, at 29◦C and 31◦C, the number of similar bonds stays

nearly the same (approximately the same as at 27◦C). This effect occurs because the

large depletion attraction between the particles and walls induces dynamical arrest

in the sample, thereby preventing the sample from reaching equilibrium. Due to

this dynamical arrest, the particles at these temperatures and under these conditions

cannot flip to rearrange. This effect prevents the observation of an obvious P-F

crossover. Our model predictions thus deviate from our experimental observations at

high temperatures because arrested dynamics prevent equilibration.

4.1.2. Experiments with Larger Wall-to-Wall Separation

This section summarizes the static (structural) behaviors of the colloidal systems

with larger H/D (H/D = 1.29, 1.55). At larger H/D, the particles in the samples

can more readily accommodate lattice distortion; thus, their behavior will deviate to

a greater degree (i.e., than H/D = 1.23) from the ideal case of a fixed lattice. Lattice

distortion is a signal that the samples deviate from ideal behavior.

We quantify lattice distortion in terms of a local bond order parameter ψp
6 (illus-
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trated in Figure 4.3), which is defined for a given particle p as

ψp
6 =

1

np

np∑
k=1

exp (6iθpk), (4.1)

where np is the number of nearest neighbors of particle p, and θpk is the angle between

the vector connecting particle p to its neighbor particle k and an arbitrary fixed axis

[55, 118, 148, 170]. In a perfect triangular lattice, all np = 6 and all θpk = 60◦,

resulting in all |ψp
6| = 1. Otherwise,

• Regions near particles where |ψp
6| ≲ 0.8 are considered defects [170];

• Regions near particles where 0.8 ≲ |ψp
6| < 1 are considered distortions.

The first row in Figure 4.4a-c, are experiments at smallest H/D ∼ 1.23 for tem-

peratures of 21, 27 and 31 ◦C. Notice that there are very few locations at each

temperature where |ψp
6| ⪅ 0.8 (purple, green, and blue markers); moreover, those are

regions with defects (not to be mistaken for lattice distortion). Otherwise, we see

qualitatively, for most particles |ψp
6| ≈ 1. This indicates that at H/D ∼ 1.23 there is

little to no lattice distortion, confirming that this sample satisfies model assumptions

Arbitrary fixed axis

Figure 4.3: Local bond order parameter ψp
6 schematic. Blue circles indicate particles,

and θpk is the angle between the vector connecting particle p to a neighbor k (black
arrow) and an arbitrary fixed axis (red line).
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that particles are fixed on their lattice sites and that L/D ≥ 1.00. For the larger

H/D regions, the assumption that particles are fixed on the triangular lattice sites

fails. For H/D ∼ 1.29 and 1.55, lattice distortion emerges, and is revealed in Figure

4.4(d-i) by the yellow and orange markers. We expect the simple free-volume models

to be less accurate for these larger H/D, and thus the analogy to atomic Ising spin

systems to be somewhat weaker for these larger H/D.

Nevertheless, these systems exhibit interesting similarities and differences com-

pared to samples with H/D ∼ 1.23. We first describe their structural behavior. For

the system with H/D ∼ 1.29, Figure 4.5a-f provides images at different temperatures

that also reveal the existence of a structural crossover where the coupling-constant

changes sign (see Figure 4.6). The images in Figure 4.5 and the data in Figure 4.6

21°C(a) 27°C(b) 31°C(c)

21°C(d) 27°C(e) 31°C(f)

21°C(g) 27°C(h) 31°C(i)

Figure 4.4: ψ6 for different values of H/D at temperatures 21, 27, and 31 ◦C. (a-c)
H/D ∼ 1.23. (d-f) H/D ∼ 1.29 (g-i) H/D ∼ 1.55.
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clearly show the evolution from frustrated antiferromagnet to paramagnet. For the

lower temperature (21 ◦C), βUmin = −1.2, ⟨Ns⟩ = 2.5, and for the higher temperature

(31 ◦C), ⟨Ns⟩ = 3.3 at βUmin = −4.1.

This structural behavior is consistent with the theoretical expectation that the

AF-P crossover transition will arise but will shift (see Figure 3.12) to occur at greater

depletion attraction compared to samples with smaller H/D. Thus, when more free

volume is accessible to the particles (with increasingH/D), the fraction of phase space

for which the depletion attraction is important is reduced, and the crossover shifts.

For H/D ∼ 1.29, the system reaches non-equilibrium at 27 ◦C (see Figure 4.11a). As

was the case for H/D ∼ 1.23, the number of similar bonds at 27◦C, 29◦C, and 31◦C

is roughly constant. This effect is again due to the large depletion attraction between

the particles and walls; the wall interaction induces dynamical arrest, and the presence

of lattice distortion (lattice distortion increases as wall-to-wall separation increases)

(c)

29°C

(b) 23°C21°C(a) 25°C

27°C(d) (e) (f) 31°C

Figure 4.5: Experimental images of the buckled monolayer of colloidal spheres with
tunable pair-potentials. Shown are the data from confinement thickness H/D ∼ 1.29
temperatures (a) 21, (b) 23, (c) 25, (d) 27, (e) 29, and (f) 31 ◦C. Images were contrast-
enhanced for visual clarity.
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further prevents the sample from reaching equilibrium. Due to dynamical arrest,

the particles under these conditions cannot flip to rearrange, thereby preventing the

observation of a P-F crossover.

The system with H/D ∼ 1.55 exhibits zigzag-stripe configurations exclusively (see

Figure 4.7) and ⟨Ns⟩ < 3 for all temperatures. The data no longer follow our quasi-2D

model predictions because the particles are much freer to move slightly with respect

to their lattice sites and thus distort the lattice (see Figure 4.4g-h). In this case,

Figure 4.6: Number of similar bonds, ⟨Ns⟩ and βJ versus depletion attraction
strength, βUmin for H/D ∼ 1.29. The black line is βJ extracted from our quasi-
2D model, with parameters H/D = 1.3, L/D = 1.01, and ϕd = 0.0049. Circles are
experimental data; solid black (open) circles indicate data from equilibrium (non-
equilibrium) samples.
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the dynamics are slow at lower and higher temperatures. At lower temperatures, the

sample is quenched into a zigzag/stripe state. The depletion attraction between the

particles and walls at higher temperatures induces dynamical arrest. Therefore, none

of the experiments at H/D ∼ 1.55 are truly in equilibrium, and since we start in

the AF phase before jumping to high temperature, all the samples remain “stuck” in

the AF regime. This is illuminated in the dynamics (see Figure 4.11b) and will be

discussed in Section 4.3.

4.2. Static Structural Observations and Morphology of Exper-

imental Data

The structural observations about ⟨Ns⟩ provide experimental evidence for the

crossovers from one magnetic phase to another. Another measurable morphological

parameter worth exploring is its variance, var(Ns) = ⟨N2
s ⟩ − ⟨Ns⟩2. The variance is

(c)

29°C

(b) 23°C21°C(a) 25°C

27°C(d) (e) (f) 31°C

Figure 4.7: Experimental images of a buckled monolayer of colloidal spheres with
tunable pair-potentials. Shown are the data from confinement thickness H/D ∼ 1.55
temperatures (a) 21, (b) 23, (c) 25, (d) 27, (e) 29, and (f) 31 ◦C. Images were contrast-
enhanced for visual clarity.
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plotted versus ⟨Ns⟩ in Figure 4.9. In this figure, the solid line shows the behavior

predicted by the Ising model as discussed in Chapter 3, section 3.3. The measured

data for samples with all H/D are also shown. In many ways, the plot of var(Ns)

versus ⟨Ns⟩ permits us to compare experiment to theory more critically because it

eliminates temperature (or potential energy minima) as a variable and thus reduces

some of the complications of dynamic arrest. ⟨Ns⟩ is used as the independent variable

to characterize the state of the sample; thus, if the sample at high temperature got

“stuck” in an equilibrium state at a lower temperature, then the data remains in the

Figure 4.8: Number of similar bonds, ⟨Ns⟩ and βJ versus depletion attraction
strength, βUmin for H/D ∼ 1.55. The black line is βJ extracted from our quasi-
2D model, with parameters H/D = 1.5, L/D = 1.01, and ϕd = 0.0049. Circles are
experimental data; solid black (open) circles indicate data from equilibrium (non-
equilibrium) samples.
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Figure 4.9: Variance of the number of similar bonds var(Ns) versus the number
of similar bonds ⟨Ns⟩. The solid line gives predicted behavior based on the Ising
model. Data for all samples are shown; the blue triangles, orange pentagons, and
green circles show results for the samples with different H/D. AF, P, and F denote
antiferromagnetic, paramagnetic, and ferromagnetic regimes.

state at the lower temperature.

We first focus again only on data from samples with the smallest H/D (blue

triangles). The figure shows the fluctuations in the number of similar bonds per par-

ticle as a function of the average number of similar bonds in the sample. At small

and intermediate depletion attraction, the variance ranges from var(Ns) ≈ 1.3 to

var(Ns) ≈ 2.0, and it follows the predictions of the Ising model in both the antifer-

romagnetic and paramagnetic regimes. At the highest temperature, var(Ns) ≈ 2.5;

clearly, the samples in this high temperature are not simply exhibiting the equilibrium
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properties of a sample at a lower temperature; rather, they have been quenched into

local free energy minima during the annealing process with many particles remain-

ing stuck at the walls. At this temperature, we can visually confirm the presence of

a paramagnetic phase (J > 0, below the P-F transition) from the presence of large

clusters of particles with similar spin, but the sample is definitively out of equilibrium.

We next examine the samples with larger H/D. The orange pentagons in Figure

4.9 show the variance versus the number of similar bonds for H/D ∼ 1.29. At low

depletion attraction (21 ◦C), ⟨Ns⟩ ≈ 2.5 and var(Ns) = 0.73. This difference reflects

a morphology of stripes and zigzags that differs from samples with H/D ∼ 1.23. For

smaller H/D, the stripes are more randomly oriented; at larger H/D, longer zigzags

and stripes arise and appear more ordered. The observed ⟨Ns⟩ and var(Ns) for small

var(Ns) is consistent with the emergence of the zigzag-stripe ordered ground state

expected to occur because lattice distortion can partially relieve frustration [23, 54,

85]. The remainder of the var(Ns) versus ⟨Ns⟩ data fall nicely onto the predictions

of the Ising model and exhibit the transition from a frustrated antiferromagnet to a

paramagnet. At the highest temperature (Figure 4.9), the images show substantial

clusters of buckled-up (or buckled-down) particles residing in the same plane, as might

be expected in the paramagnetic phase, and traces of zigzag-stripe configurations

perhaps where the lattice is slightly distorted.

The system with H/D ∼ 1.55 exhibits zigzag-stripe configurations exclusively

(see Figure 4.7). ⟨Ns⟩ < 3 for all temperatures, and the var(Ns) ≈ 0.31 − 0.84 is

small for all temperatures (see green circles in Figure 4.9). Again, ⟨Ns⟩ and var(Ns)

data fall on the predicted Ising model curve, and the primary structural observations

are consistent with prior work [59, 142] for these data that never make it out of the

frustrated antiferromagnetic phase.
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4.3. Dynamics and Structural Arrest

4.3.1. Experiments with the smallest wall-to-wall separation

Finally, we examine the “spins” temporal dynamics in the colloidal samples. We

have alluded to this effect in our discussion of the structural properties as a function

of temperature (or other parameters); however, we have not discussed the dynamical

data explicitly. Here we offer quantitative justification for our earlier qualitative dis-

cussion. Following our approach to the structural data, we first focus on samples with

H/D ∼ 1.23. In principle, sample spin dynamics could vary within each magnetic

phase as a function of depletion interaction strength and across the antiferromagnetic

to paramagnetic transition. Here we focus on the simplest temporal fluctuations:

single-particle spin-flip dynamics.

To quantitatively analyze spin-flip dynamics, we collect single-particle “spin” tra-

jectories as a function of time. We determine si(t) for each particle i in the video

field-of-view. Using these trajectories, we compute the single-particle spin-flip tem-

poral autocorrelation function,

C(t) =
⟨si(t)si(0)⟩ − ⟨si⟩2

⟨s2i ⟩ − ⟨si⟩2
. (4.2)

Here the angled brackets indicate averages over all particles. We fit the resultant

curves to a stretched-exponential, C(t) = exp[−(t/τ)γ]. We extract a relaxation

time, τ , and stretching factor, γ, from the fits. The data and fitting results are shown

in Figure 4.10a,b, respectively. Stretched exponentials have 0 < γ < 1 and can be

indicative of heterogeneity amongst single-particle relaxation times.

When βUmin is comparatively small, C(t) decays rapidly and is roughly expo-
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(a) (b)

Figure 4.10: (a) Spin-flip autocorrelation functions and fitted parameters for H/D ∼
1.23. Single-particle “spin” autocorrelation functions, C(t) versus lag time t. (b) The
γ (red) and τ (blue) extracted from the stretched-exponential fits as a function of
temperature T . The fitting function is: C(τ) = exp[−(t/τ)γ].

nential. In this regime, the relaxation time, τ , increases with depletion attraction

strength (i.e., increasing temperature), and the temporal fluctuations are significant

within the observation timescales, enabling the system to reach equilibrium. At higher

temperatures (starting for depletion attraction strength, βUmin ∼ −3.6 at T = 27 ◦C),

the system becomes dynamically arrested. Dynamic arrest sets in when the system

is deep in the paramagnetic regime, relatively close to the ferromagnetic phase.

The attenuation of fluctuations at higher temperatures is primarily due to the

depletion attraction between the particles and the wall. We have discussed this effect

in Chapter 3. The depletion attraction for particles near walls has been studied

[33, 34, 73, 86, 120, 121] and is expected to be approximately twice that of two colloidal

particles in the bulk. The local energy barrier for wall escape (near both walls)

becomes significant for T > 27 ◦C, and the system is effectively quenched into a local

minimum of the free energy landscape at some point during the sample processing

(temperature jump). At the highest temperatures, the samples exhibit structures akin
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to frozen-in non-equilibrium paramagnetic phases. Dynamic arrest prevents transition

to the ferromagnetic phase. Interestingly, the wall interactions only slightly affect the

equilibrium free energy (see dashed lines in Figure 3.12), but they dramatically affect

spin-flip rates. This phenomenology provides an interesting physical contrast between

the colloidal “magnetic” system and the atomic spin systems.

4.3.2. Experiments with the larger wall-to-wall separation

Figure 4.11a shows spin-flip autocorrelation functions for theH/D ∼ 1.29 samples.

These autocorrelation functions exhibit similar trends as in the sample with H/D ∼

1.23. That is, we again see two regimes. The low-temperature regime exhibits roughly

exponential dynamics that decay rapidly and thus allow the system to evolve to

equilibrium states. At higher temperatures, the samples exhibit dynamic arrest due

to the depletion attraction of particles to the walls.

By contrast, the dynamics for this system withH/D ∼ 1.55 are very slow and non-

exponential at all temperatures (see Figure 4.11b). The behavior of these samples

is qualitatively different from the two systems with smaller H/D. The dynamics

at low temperatures are slow because the system resides in the strongly frustrated

antiferromagnet regime with significant lattice distortion. The dynamics at the high

temperatures are also slow, but like the samples with smaller H/D, this arrest effect

is due to the strong depletion attraction of the particles to the walls. Although the

coupling constant varies with temperature, this system is quenched into deep minima

of the free energy landscape for all temperatures (but for different reasons at different

temperatures than the other samples).
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(c) (d)

Figure 4.11: Spin-flip autocorrelation functions C(t) versus lag time t.(a) and (b) are
spin-flip autocorrelation functions for H/D ≈ 1.29 and H/D ≈ 1.55. (c) and (d) are
the γ (red) and τ (blue) extracted from the stretched-exponential fits as a function
of temperature T .
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CHAPTER 5

Conclusions, Ongoing, and Future Work

5.1. Summary

This dissertation has described, both theoretically and experimentally, how buck-

led colloidal monolayers on a triangular lattice can be induced to exhibit antiferromag-

netic, paramagnetic, and ferromagnetic behavior. The key to generating this palette

of effects was to start with a buckled-particle thin film and then introduce short-

range, temperature-tunable entropic depletion attractions. We developed theoretical

models with varying degrees of complexity demonstrating these effects and experi-

mentally corroborated the central ideas. Additional dynamical measurements of these

systems, specifically the spin-flip temporal autocorrelation functions, showed that dy-

namic arrest is an intrinsic feature of this system that arises when the depletion-driven

attraction of particles to the sample walls becomes strong. Thus, the colloidal sys-

tem has similarities and differences with respect to the “ideal” Ising system that are

interesting to understand.

In future experiments, it may be feasible to eliminate depletion-induced particle-

wall surface effects. Without complications from the wall, we can better elucidate the

impact of lattice distortion alone and study the crossover, with single particle (spin)

resolution, from one phase to another more cleanly. Further, we can re-examine the

dynamics of these systems with techniques that have been applied to understand

other frustrated, glass-like systems (see below). Additionally, it might be interesting

to study the “spin” structure and dynamics in this system near defects such as grain

boundaries, and to examine the role of disorder on the frustration and phase tran-
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sitions; experiments performed with compressible lattices could be compared to our

experimental system, which has a more rigid lattice. Another interesting experiment

class could explore the effects of an applied external field (e.g., gravity or something

else), which could connect to an applied magnetic field in the traditional Ising model.

Per the present system, with wall interactions, we have effectively created a new Ising

system wherein the spins (up or down) must pass over energy barriers (that can be

tuned) to reach their final states. The non-equilibrium kinetics that follows quenching

events and other rapid processes will thus be different from traditional Ising systems

and could lead to new physics effects and “final states” of materials.

5.2. Ongoing and Future Work

In this section, we describe the progress we have made experimentally to analyze

the sample dynamics using metrics beyond the simple single-spin spin-flip autocorre-

lation function. We will first provide a theoretical background for the analysis. Then

we will discuss some preliminary results. This work is on a trajectory toward publi-

cation, which a modest amount of further experiments and analysis will facilitate.

5.2.1. Markov State Models and Transition Matrix Theory

We are studying the relaxation dynamics of the buckled colloidal monolayers with

and without depletion attraction. One of our goals is to understand how local struc-

ture facilitates cooperative flipping of spins (and their nearest neighbors) under dif-

ferent frustration conditions.

Specifically, we are studying the equilibrium and non-equilibrium dynamics at the

colloidal scale using a theory of stochastic processes, i.e., a Markov state model. We

seek to extract dynamic information about the sample from our experiments based

on a simple master equation [110]. This subsection will focus on and provide some
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fundamental theoretical aspects of Markov state models and transition matrix theory

that are useful for the experiments.

We consider a two-state Ising model wherein at each lattice site a spin, si(t), at

time t can point up si = 1 or down si = −1. One can generally associate a landscape

with the energy of different spin configurations. Minima correspond to low-energy

configurations (global or metastable); maxima correspond to energy barriers between

the low-energy configurations.

Frustrated spin systems and glasses exhibit slow relaxation timescales that may

be attributed to such a free energy landscape containing multiple minima separated

by large energy barriers [21]. The dynamics in these complex spin systems (i.e.,

frustrated spin systems, spin glasses, etc.) are non-trivial. The Markov state model

is a tool to understand and quantify frustrated spin systems’ statics and dynamics.

The following discussion is based on material from the work of Bowman et al. 2014

[15]. A Markov state model is a discrete-time integrated version of the continuous

master equation [116]. The probabilities of a particular state or configuration are

generated from the previous state. This stochastic model can be represented with a

master equation:
d

dt
pi(t) =

∑
i ̸=j

−pi(t)ki→j + pj(t)kj→i, (5.1)

where pi(t) is the probability of the spin to be in state i at time t, and ki→j is the

transition rate from state i to state j.

We first analyze a simple two-state Ising model. In this case, the master equation
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can be written as a set of two coupled differential equations:

d

dt
p1(t) = −p1(t)k1→2 + p2(t)k2→1;

d

dt
p2(t) = +p1(t)k1→2 − p2(t)k2→1,

(5.2)

where p1(t) is the probability that the particle is spin-up at time t, p2(t) is the

probability of being in the spin-down state at time t, k1→2 is the transition rate

from state 1 to state 2, and k2→1 is the transition rate from state 2 to state 1. In

steady-state,
d

dt
pi(t) = 0, (5.3)

which gives the condition:

p1(t)k1→2 = p2(t)k2→1. (5.4)

We also have the condition:

p1(t) + p2(t) = 1. (5.5)

We can solve Equations 5.2 to obtain:

p1(t) = peq1 +
[
p01 − peq1

]
e−kt;

p2(t) = peq2 +
[
p02 − peq2

]
e−kt,

(5.6)

where k = k1→2 + k2→1, peqn are the probabilities in equilibrium, and p0i are the

initial probabilities at t = 0. The equilibrium probabilities are found by setting the

time derivatives of equation 5.2 equal to zero and using the probability conservation
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equation 5.5 to obtain:

peq1 =
k1→2

k1→2 + k2→1

; (5.7)

peq2 =
k2→1

k1→2 + k2→1

. (5.8)

For this simple problem, we expect the probabilities of each state to relax exponen-

tially to their equilibrium probability on a timescale that depends on their transition

rates.

For this simple problem, the Boltzmann equation gives the probability of being in

a particular state:

pi(t)

pj(t)
=
ki→j

ki→j

=
e−Ei/kBT

e−Ej/kBT
= e∆E/kBT , (5.9)

where ∆E = Ei−Ej. These results show fundamental relationships exist between the

probability of occurrence of each state, the transition rates, and the energy difference

between the initial and final states. These results can be manipulated to relate the

state probabilities at time t to the state probabilities at time t+ τ .

Another way to describe the dynamics/time-evolution of the 2-state system is

given below. It follows from manipulation of equation 5.6, which when generalized

offers a methodology to understand our experiments (beyond the 2-state model).

p1(t+ τ)

p2(t+ τ)

 =

k2→1 + k1→2e
−kτ/k k2→1(1− e−kτ )/k

k1→2(1− e−kτ )/k k1→2 + k2→1e
−kτ/k


p1(t)
p2(t)

 . (5.10)
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Or, written in yet another way, we have:

p(t+ τ) = T(τ)p(t). (5.11)

Here T is called the transition probability matrix. The transition probability matrix

is a matrix of conditional probabilities for transitioning between states 1 to 2 in time

τ .

An example two-state transition matrix is:

T(τ) =

T1→1(τ) T1→2(τ)

T2→1(τ) T2→2(τ)

 (5.12)

The matrix element, Tij, gives the probability of a particle transitioning to state j

at time t + τ if it was in state i at time t. The transition probability matrix T(τ)

contains all the important sample dynamics and can be derived experimentally from

the temporal train of sample images.

To better understand the transition matrix, and how we extract information about

sample dynamics from it, consider the eigenfunctions of T. The eigenvalue equation

for the transition matrix is written below.

T(τ)ψ = λψ. (5.13)

Here ψ is an eigenvector of T, and λ is its corresponding eigenvalue. We can diago-

nalize the transition matrix using standard methods,

T(τ) = VDV−1; (5.14)
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the diagonal of the matrix

D =

1 0

0 λ2

 , (5.15)

contains the eigenvalues of T(τ). Note, the columns of the matrix V are composed

of the eigenvectors of T(τ):

V =

 1 1

1−T11

1−T22
−1

 =

[
ψ1 ψ2

]
, (5.16)

where

ψ1 =

 1

1−T11

1−T22

 ; ψ2 =

 1

−1

 . (5.17)

Notice that one can raise D to higher powers and thereby obtain the transition

matrix at different discrete values of τ . Formally:

T(nτ) = T(τ)n, (5.18)

Is obtained by utilizing the Chapman-Kolmogorov equation. The right-hand side can

be written as

T(τ)n = VDnV−1, (5.19)

and therefore,

p(t+ nτ) = Tn(τ)p(t). (5.20)

We are interested in studying the behavior of more complex states, especially

states with nearest neighbors, because such studies can teach us about how specific

local environments influence relaxation. For systems with many different states (i.e.,
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more than two), matrix mechanics is often the preferred method of choice for setting

up these problems. One can re-write the master equation (Equation 5.1) as:

d

dt
p(t) = −Kp(t), (5.21)

where p(t) is a probability vector with elements pi(t) (and there can be more than 2

elements!).

The generator matrix K, also known as the transition rate matrix, contains the

transition rates of the states. The element, Ki→j, is the transition rate from state i

to j. The diagonal elements of K are constrained such that the rows of K sum to

zero or

Kii = −
∑
j ̸=i

Kij. (5.22)

Solving the master equation (Equation 5.21), one obtains

p(t+ τ) = e−Kτp(t), (5.23)

where the lag time, τ , advances the initial probability by discrete multiples of τ and

T(τ) = e−Kτ . (5.24)

The eigenvectors of T(τ) are the same as K, and the eigenvalues, λl of T(τ) are

related to those of K, i.e.,

tl = − τ

lnλl(τ)
. (5.25)

This timescale is the relaxation time of the lth mode, ψ(l) [15].

The simple two-state system has two eigenvalues and two eigenvectors. The first
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eigenvalue is always λ1 = 1 and the corresponding mode is the first eigenvector ψ(1).

The first eigenvector is the steady-state probability distribution vector

psteady-state =

p1(t→ ∞)

p2(t→ ∞)

 . (5.26)

The second eigenvalue λ2 is essentially the time that it takes for an initial proba-

bility (which is different from the equilibrium vector) to decay back to its equilibrium

distribution, i.e.,

t2 = − τ

lnλ2(τ)
. (5.27)

Its corresponding eigenvector, ψ(2), represents a change (an orthogonal change) in

probability from equilibrium.

Eigenvalue and Eigenvector Spectral analysis

The eigenvalues and eigenvectors of the transition matrix are thus related to “nat-

ural” relaxation timescales and structural/configurational changes associated with

the sample. For every lth eigenvalue, there is a corresponding eigenvector. This

eigenvector describes a “mode” that is different from equilibrium and evolves toward

equilibrium on a relaxation timescale (set by its eigenvalue). An arbitrary configura-

tion is built from a weighted sum of these eigenvectors.

Information about sample spatiotemporal dynamics are built into the transition

matrix. Below, we write the transition matrix in terms of a linear combination of the

left eigenvectors, their eigenvalues, and their right eigenvectors. If the matrix fulfills

detailed balance, then the right eigenvectors can be replaced with the transpose of
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the left eigenvector. This gives the following elements for the transition matrix:

Tij =
N∑
l=1

λlψ
(l)
i ψ

(l)
j πj, (5.28)

with eigenvalue and eigenvector pairs (λl and ψ(l)) satisfying,

N∑
j=1

Tijψ
(l)
j = λlψ

(l)
i ; k = 1, ..., N, (5.29)

and with a normalization condition:

N∑
i=1

ψ
(l)
i ψ

(k)
i πi = δl,k ; l, k = 1, ..., N. (5.30)

where λl is the lth mode eigenvalue, ψ(l)
i is i-th component eigenvector for the lth

mode, and πj is the equilibrium distribution [15].

The spectral decomposition tells us how the system relaxes towards equilibrium.

Whole system dynamics are associated with a superposition of dynamical subpro-

cesses; each subprocess is related to a mode ψ(l) and a corresponding eigenvalue λl.

These dynamical processes are generally ordered to decay more rapidly with increas-

ing index l. At a long time τ → ∞, the first mode in the superposition remains (i.e.,

this mode has eigenvalue λ1 = 1 [45, 113]) and is the equilibrium state distribution.

All other modes, which all have λl < 1, correspond to configurations that dynami-

cally decay; they are associated with specific “non-equilibrium” structural rearrange-

ments that evolve to zero as the system evolves towards the equilibrium distribution.

The modes associated with eigenvalues closer to unity correspond to structural rear-

rangements with slower dynamics, and the modes with eigenvalues closer to zero are

associated with structural rearrangements with faster dynamics.
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The modes of these processes relax exponentially with the relaxation timescale tl

(Equation 5.25). Assuming appropriate statistics and long enough τ , the relaxation

timescales tl(τ) should converge constant value. The convergence of tl with increasing

τ validates the selection of a τ . For smaller eigenvalues, λl, the implied timescale, tl,

is smaller, and the perturbation (from equilibrium) relaxes faster toward equilibrium.

To summarize, each mode (eigenvector of T(τ)) is associated with a relaxation

timescale tl(τ). The relaxation timescales tell us how fast each mode (i.e. out-of-

equilibrium configuration) decays towards equilibrium. Therefore, the eigenmodes

and eigenvalues provide information about the structural transitions that drive the

system toward equilibrium. Using this method, i.e., from measurements of T(τ),

we can derive the hierarchy of relaxation times associated with local structures and

thereby gain insight into the stretched exponential single particle spin autocorrelation

functions often observed; stretched exponential single particle spin autocorrelation

functions can imply that there are multiple relaxation times in the system. Addi-

tionally, we can compute the transition pathways by transition state theory, which

to our knowledge has never been carried out in studies of colloidal systems with

heterogeneous and/or glassy dynamics.

5.2.2. Preliminary Results: Relaxation Dynamics in Quasi-2D Buckled

Colloidal Suspensions

In this section, we give preliminary results, utilizing data from our experiments

with H/D ∼ 1.23. We begin by looking at three-particle clusters. For a N particle

cluster, since each particle can be up or down, there are 2N possible state configura-

tions. In this case, N = 3, there are eight possible configurations (Figure 5.1).

Experimentally, we can construct a transition matrix (Equation 5.12) from video

microscopy measurements. For pairs of frames separated by τ , we simply identify
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1 2 3 4 5 6 7 8

Figure 5.1: The possible configuration of three-particle clusters. Each particle can be
up (red circles) or down (blue circles), which gives 23 = 8 possible state configurations.

configurations and count transitions from one configuration to another. The “experi-

mental” transition matrix is:

Tij(τ) =
Cij∑
k Cik

, (5.31)

where Cij is the number of transitions identified from state i to j within a lag time

τ ; the denominator in Equation 5.31 normalizes Cij [15]. To construct a “legitimate”

transition matrix, we must choose an appropriate lag time τ to satisfy these Markov

assumptions. To select an appropriate lag time, in practice one estimates the tran-

sition matrix at many values of τ . τ is illustrated in Figure 5.2, and can also be

considered a sliding window. We count the transitions within a sliding window τ

and build many transition matrices at different values of τ . The transition matrix is

selected for the value of τ wherein the transition matrix elements remain constant (or

at least change only very slowly) as a function of increasing τ (we choose the τ for

when tl(τ) start their plateaus).

The transition matrix, in the present example, is for an eight-state configuration

and will be an 8 x 8 matrix:

T(τ) =


T1→1(τ) . . . T1→8(τ)

... . . . ...

T8→1(τ) . . . T8→8(τ)

 . (5.32)

From each transition matrix, we can calculate the eigenvectors and eigenvalues.
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State 

Index

Figure 5.2: Illustration of the lag time τ or sliding window, utilized for counting
transitions. Adapted from Bowman et al. 2014 [15].

The modes with the largest eigenvalues are the main channels of probability current

or flux between the system’s configuration sub-states. Every mode has an eigenvalue

that quantifies how slow or fast the corresponding probability flux occurs.

Using Equation 5.13, we find the eigenvectors and eigenvalues of T(τ). There will

be eight eigenvectors with eight components within each eigenvector:

ψ1 =


ψ1(state 1)

...

ψ1(state 8)

 ,ψ2 =


ψ2(state 1)

...

ψ2(state 8)

 , . . .ψ8 =


ψ8(state 1)

...

ψ8(state 8)

 , (5.33)

and each eigenvector has a corresponding eigenvalue:

λ1; ψ1 , λ2; ψ2 , . . . , λ8; ψ8 . (5.34)
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Within each vector, there are eight components ψ1(state n), that each corre-

spond to on or n = (1, 2, ...8) configurations. The first eigenvector corresponds

to the steady-state probability distribution of each configuration or ψ1(state n) =

psteady-state(state n).

Figure 5.3 shows the equilibrium eigenvectors extracted from the experimental

transition matrix: ψ(1), for low (Figure 5.3a) and high (Figure 5.3b) temperature

data. Recall, in changing the temperature, we have tuned the depletion attraction

to change the sign of the near-neighbor coupling constant, J , i.e., from negative (an-

tiferromagnetic) to positive (ferromagnetic) values. The left figure is the experiment

at low temperatures with very little attraction, and the right is the high-temperature

experiment with higher attraction. It is apparent that the probability of certain con-

figurations changes as a function of attraction strength. This result is most clear

from state configurations n = 1 and n = 8, which have lower probability (all particles

up or down clusters). If the depletion interactions are strong, there is an attraction

(a) (b)

Figure 5.3: Equilibrium eigenvectors ψ(1) for (a) 21 ◦C and (b) 31 ◦C.
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between particles, as well as between particles and walls; this leads to an effective

ferromagnetic interaction where n = 1 and n = 8 are more favored. As expected,

the equilibrium eigenvector ψ(1) exhibits a significant increase when the temperature

increases; note, the eighth element of the equilibrium eigenvector is small because a

factor in the sample has broken the up/down symmetry (analogous to a magnetic

field). There are many factors that could break the symmetry such as the charge

distribution on the inner surface of the coverslips, distribution of the depletants in

the sample, gravity, nucleation around stuck particles, or other factors.

Some eigenvector spectra and relaxation timescales tl are plotted in Figure 5.4 for

the low-temperature sample. The spectra and timescales also change with tempera-

ture. At low temperature (Figure 5.4), for the slowest mode l = 2, there is a larger

participation in all up or all down configurations in ψ(2); evidently, there are large

energy barriers to flip from all up or all down configurations to get to the equilib-

rium distribution, and thus this process is slow. The fastest mode, ψ(7), has a lot of

participation for configurations with one similar bond; the fact that these configura-

tions are closer to the equilibrium distribution provides a reason for why relaxation

of this eigenvector could be faster. Further analysis is needed to uncover the physical

meaning of these other modes ψ(l>1).

Our preliminary results illustrate the transition matrix method and reveal a hi-

erarchy of time scales associated with relaxation in these systems in different-sized

particle clusters, hinting at insight into cooperative flipping in multi-particle clusters.

The next step is to determine what structures are locally favored and associated with

the fast and slow relaxation timescales.

Looking to the future, we will work with this theoretical approach and other

colloidal systems to learn about complex relaxation in frustrated spin systems and
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Slow Relaxation Mode Fast Relaxation Mode

Figure 5.4: Selected eigenvectors ψ(2), ψ(4), and ψ(7) with corresponding relaxation
timescales tl(τ = 400sec) at H/D ∼ 1.23 and 21 ◦C.

glasses. Even in their infancy, these quasi-two-dimensional buckled colloidal systems

hold promise for understanding more complicated systems such as glasses, spin glasses,

protein dynamics, and neural networks – just by utilizing colloids.
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