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Dynamic cerebral autoregulation
measured by diffuse correlation
spectroscopy
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Abstract

Dynamic cerebral autoregulation (dCA) can be derived from spontaneous oscillations in arterial blood pressure (ABP) and

cerebral blood flow (CBF). Transcranial Doppler (TCD)measuresCBF-velocity and is commonly used to assess dCA.Diffuse

correlation spectroscopy (DCS) is a promising optical technique for non-invasive CBF monitoring, so here we aimed to

validate DCS as a tool for quantifying dCA. In 33 healthy adults and 17 acute ischemic stroke patients, resting-state hemo-

dynamic were monitored simultaneously with high-speed (20Hz) DCS and TCD. dCA parameters were calcaulated by a

transfer function analysis using a Fourier decomposition of ABP and CBF (or CBF-velocity). Strong correlation was found

between DCS and TCD measured gain (magnitude of regulation) in healthy volunteers (r¼ 0.73, p< 0.001) and stroke

patients (r¼ 0.76, p¼ 0.003). DCS-gain retained strong test-retest reliability in both groups (ICC0.87 and 0.82, respectively).

DCSandTCD-derivedphase (latencyof regulation) did not significantly correlate in healthy volunteers (r¼ 0.12, p¼ 0.50) but

moderately correlated in stroke patients (r¼ 0.65, p¼ 0.006). DCS-derived phasewas reproducible in both groups (ICC0.88

and 0.90, respectively). High-frequency DCS is a promising non-invasive bedside technique that can be leveraged to quantify

dCA from resting-state data, but the discrepancy between TCD and DCS-derived phase requires further investigation.
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Introduction

Cerebral autoregulation (CA) describes the ability to

maintain stable cerebral blood flow (CBF) despite fluc-

tuations in arterial blood pressure (ABP), thus protect-

ing the brain from hypo- and hyper-perfusion.1,2 CA

can be described as static or dynamic. Static autoregu-

lation is based on steady-state measurements of CBF

and ABP, and thus contains information about the

magnitude of CBF regulation but does not account

for the speed at which autoregulatory adaptation

takes place. Dynamic cerebral autoregulation (dCA)

assess blood flow changes relative to sudden changes

in ABP and is sensitive to both the magnitude of CBF

regulation and the latency (phase) of the vasoregula-

tory system.1–3 In practice, dCA is readily assessed by

inducing a sudden change in ABP, for example via

thigh cuff deflation,4,5 Valsalva,6 or postural maneu-

vers.7,8 Alternatively, spontaneous oscillations in ABP

and CBF in the resting-state can be leveraged,8 for
example by a transfer function analysis (TFA). TFA
uses a Fourier decomposition of the two waveforms to
quantify the effect of ABP on CBF 9–11 and eliminates
the need for an experimental maneuver or intervention
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to alter ABP. It may therefore be easier to implement
and better tolerated in populations at risk for adverse
reactions to ABP shifts, including those with cerebro-
vascular disease.12,13

Transcranial Doppler ultrasonography (TCD) is
commonly used to assess cerebral hemodynamics by
quantifying dCA.14–17 However, TCD has limitations.
TCD requires an operator with technical expertise and
measures blood velocity18 rather than tissue-based flow.
Additionally, adequate temporal bone acoustic win-
dows for TCD are absent in nearly 20% of individu-
als.19,20 Alternative non-invasive tools to measure
cerebral hemodynamics are therefore appealing.
Cerebral oximetry based near-infrared spectroscopy
(NIRS) has been used as a surrogate of CBF in autor-
egulation research,21–23 but accepting oximetry as a sur-
rogate of CBF relies on assumptions, including constant
arterial oxygen saturation and cerebral oxygen metabo-
lism,24 which may not be true in cerebrovascular disease
states. Moreover, the NIRS signal is contaminated by
scalp blood flow and may therefore reflect a combina-
tion of systemic and cerebral hemodynamics.25

In this study, we explore the potential of another novel
optical technique to measure dCA: diffuse correlation
spectroscopy (DCS). DCS uses temporal fluctuations of
light scattered by moving red blood cells to measure a
signal decay rate that is closely related (e.g., proportional)
to cerebral blood flow (CBF).26,27 DCS probes microcircu-
latory CBF directly and non-invasively, and it has been
validated against Xenon CT,28 arterial spin labeled
MRI,29,30 velocity mapping MRI,31 and 15O PET.32

Moreover, the technique has been refined with custom
probesandmulti-layermodels toameliorate scalp contribu-
tions.4,33 Operating a DCS-based instrument may require
some degree of expertise, but instruments are more com-
monly incorporating streamlined user interfaces to simplify
data collection and thereby avoid the extensive training as
would be required with other techniques, such as TCD.

To date, DCS has been used to assess cerebral autor-
egulation during thigh cuff deflation4 and by performing
a rolling correlation of ABP and CBF during prolonged
monitoring.34 However, DCS data trains have yet to be
used in a TFA based approach for computing dCA,
which is particularly well-suited for resting-state analyses.
Thus, here we aim to validate DCS, by comparison with
TCD, in generating TFA-based dCA measures from
resting-state data in two groups: (1) healthy volunteers
and (2) acute ischemic stroke patients.

Materials and methods

Participants

Healthy volunteers and acute ischemic stroke patients
were eligible for inclusion in this analysis if they

underwent resting-state hemodynamic monitoring in

one of four experimental protocols, each of which

required monitoring cerebral hemodynamics during a

bedside intervention. Data collected during the experi-

mental interventions were not utilized here. Rather,

data from the resting-state baseline measurements

were utilized in the analysis. Healthy volunteers were

at least 18 years of age without a history of stroke,

heart failure, or cerebral mass lesion that would inter-

fere with cerebral hemodynamic monitoring. Acute

ischemic stroke patients were at least 18 years of age,

with a stroke in the territory of the middle cerebral

artery (unilateral). Stroke patients were excluded if

they had a history of prior stroke, heart failure, or

cerebral mass lesion. Monitoring was completed

within 72 hours of stroke onset. Each study protocol

was approved by the University of Pennsylvania

Institutional Review Board, and all study procedures

were in accordance with the ethical standard of the

Helsinki Declaration. All subjects provided written

informed consent prior to study participation. The

study conforms to STROBE guidelines for observa-

tional studies.

Hemodynamic monitoring

Diffuse correlation spectroscopy (DCS). DCS provides a

transcranial measurement of relative microvascular

CBF. The custom instrument used here has a long-

coherence-length source laser operating at 785 nm and

eight single-photon counting avalanche photodiode

detectors in each of two detection fiber bundles.

Optical fibers coupled the sources and detectors to

the head via a 2 cm� 5 cm rubber probe, which was

placed on the temporal margin of the forehead.

Detectors in the probe were positioned 2.5 cm from

the light source and are sensitive to flow in the cerebral

cortex. The temporal fluctuations of the collected light

are quantified by the light intensity temporal autocor-

relation function. This autocorrelation function can be

fit to a semi-infinite model of the head to detect vari-

ation of blood flow. When applied to the head, the

probes were secured by double-sided medical tape

and a soft headband. Data were collected at 20Hz.

Transcranial Doppler ultrasonography (TCD). Cerebral

blood velocity (CBv) was assessed using a DWL

TCD system (Compumetics Ltd., Singen, Germany).

TCD probes were secured using a DiaMonVR adjustable

headframe, and the middle cerebral artery (MCA) was

insonated via the trans-temporal window at the depth

of 40-65mm. MCA waveform and beat-to-beat mean

flow velocity were sampled at a rate of 20Hz and syn-

chronized with DCS data.
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Continuous blood pressure monitoring. A finger plethysmo-

graph system (FinometerVR Pro, Finapres Medical

Systems) was secured to each subject’s wrist and third

digit to provide continuous non-invasive measurement

of arterial blood pressure. An inflatable brachial cuff

was placed on the same arm and used to calibrate the

FinometerVR Pro prior to data collection. BP waveforms

and beat-to-beat mean values were sampled at 20Hz

and synchronized with TCD and DCS data.

Respiratory rate and end-tidal CO2 were monitoring

throughout the session.

Measurement protocol

Healthy volunteers were enrolled in one of two studies

testing bedside interventions: low-dose inhaled nitric

oxide or thigh-cuff deflation. At the beginning of

each experiment, the subject was in the supine position

in a hospital bed, with the head-of-bed at 30�.
5-minutes of resting-state data were collected. After

the conclusion of each experiment, following a 5minute

“wash-out” period, another 5-minutes of resting-state

data were collected. The acute stroke patients were sim-

ilarly enrolled in one of two studies testing bedside

interventions (either low-dose inhaled nitric oxide or

a breathing exercise). Again, patients were positioned

in their hospital bed in the supine position, with the

head-of-bed at 30�. 5-minutes of resting-state data

were collected at the beginning and end of each proto-

col, and after a 5-minute “wash-out” period, another

5-minutes of resting-state data were collected. For the

present analysis, only the resting-state epochs were

extracted for investigation. All data taken during or

immediately adjacent to any intervention were

discarded.
Healthy volunteers were instructed to avoid caffeine,

alcohol, and exercise on the day of the monitoring ses-

sion (prior to the monitoring). Healthy volunteer meas-

urements were all performed in a single temperature

controlled (23 �C) room in the Hospital of the

University of Pennsylvania. Acute stroke patients

were not given specific instructions regarding exercise,

alcohol, or caffeine. However, patients do not receive

alcohol or caffeinated beverages from dietary services,

and exercise is naturally restricted. If patients received

a physical or occupational therapy evaluation on the

day of the evaluation, the monitoring session was per-

formed at least 2 hours after the therapy evaluation,

which was limited to a brief ambulatory and functional

assessment. Stroke patient measurements were per-

formed in the patient room in the Hospital of the

University of Pennsylvania. Patient rooms are temper-

ature controlled (23 �C).

Dynamic cerebral autoregulation (dCA)

To calculate dCA, a transfer function analysis (TFA)

quantifies the relationship between the ABP waveform

and the CBF (or CBv) waveform. To compare CBF

and CBv based dCA, the TFA analysis was performed

once using CBF and once using CBv. TFA was per-

formed using a Matlab script and algorithm provided

by the International Cerebral Autoregulation Research
Network (CARNet: www.car-net.org). From the data

trains, we thus computed gain, normalized gain, phase,

and coherence in the low frequency band (0.07–

0.2Hz).9,11 Prior to performing the TFA, the ABP,

CBv, and CBF waveforms are visually inspected for arti-

facts. Brief artifacts of <3 seconds (e.g. signal loss or

movement) were manually removed and replaced by

linear interpolation. If segments of artifact or signal
loss were longer in duration, the epoch was removed

from the analysis.
Briefly, gain quantifies the damping effect of autore-

gulation (lower gain indicates more effective CA).

Normalized gain, as reported here, describes relative

changes; this approach accounts better for inter-subject
differences in CBF and BP. Phase, calculated in degrees,

quantifies the time delay of cerebrovascular adaptation

(larger phase-shift indicates more effective CA). The

coherence function quantifies the fraction of output var-

iance (CBv or CBF) that can be explained by the input

variance (ABP) using a linear model. Based on 5minutes

of data collection for each epoch, we applied a coherence

threshold of 0.29 to our data, which represents the 95%
confidence limit based on Monte Carlo simulation.9,11

If the coherence value was below the standard threshold,

then the corresponding phase and gain values were dis-

carded, as per the CARNet algorithm.

Statistical analyses

Summary statistics are presented using means and stan-

dard deviations for continuous variables, medians and
interquartile ranges for ordinal or non-parametric var-

iables, and proportions for categorical variables. For

all statistical tests, a p-value of <0.05 was deemed to

represent statistical significance. dCA metrics were

tested for normality using Shapiro-Wilk normality

test and visually inspected to confirm a normal distri-

bution. Correlation between DCS and TCD derived

metrics was evaluated by Pearson’s or Spearman cor-
relation, accordingly. Correlation was evaluated in

healthy volunteers and stroke patients separately. The

goal is not to compare dCA between healthy volunteers

and stroke patients, but rather validate the use of DCS

in two distinct cohorts. Test-retest reliability of DCS-

based metrics was evaluated by interclass correlation,

using a two-way mixed-effects model. Bland-Altman
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plots were used to graphically depict the degree of
agreement (for the DCS vs TCD analyses, and for
the test-retest analyses). All statistical analyses were
performed in STATA/SE version 15.1 (StataCorp
LLC, College Station, TX). The data that support the
reported findings are available from the corresponding
author upon reasonable request.

Results

Healthy adults

40 healthy adults completed monitoring protocols that
included TCD, DCS, and BP monitoring during the
resting-state. Figure 1(a) describes subject exclusion
from the final analysis on the basis of data quality or
TFA processing. TCD and DCS derived autoregula-
tion parameters were derived from the remaining
patients; they compared between 33 healthy adult sub-
jects. Test-retest evaluation of DCS-derived dCA was
performed in 29 of these 33 subjects. Demographics
and dCA summary statistics are reported in in Table 1.

40 healthy adult subjects

33 subjects: Comparison of DCS and TCD

2 subjects – TCD data 
quality was insufficient

5 subjects - TFA failed to yield 
CA parameters for at least one 
modality (low coherence)

4 subjects – TFA failed to yield DCS-
derived CA parameters during the 2nd

res�ng-state epoch (low coherence)

29 subjects: DCS test-retest reliability

30 acute ischemic stroke pa�ents

17 subjects: Comparison of DCS and TCD

14 subjects: DCS test-retest reliability

6 subjects - TFA failed to yield 
CA parameters for at least one 
modality (low coherence)

5 subjects – TCD data 
quality was insufficient

2 subjects – DCS data 
quality was insufficientTransfer func�on analysis on 

the res�ng-state epoch #1

Transfer func�on analysis on 
the res�ng-state epoch #2 Transfer func�on analysis on 

the res�ng-state epoch #2

Transfer func�on analysis on 
the res�ng-state epoch #1

3 subjects – TFA failed to yield DCS-
derived CA parameters during the 2nd

res�ng-state epoch (low coherence)

(a) (b)

Figure 1. Study accrual: (a) 40 healthy adult subjects were potentially eligible based on completing protocols that included resting-
state hemodynamic monitoring with the necessary modalities. 33 yielded data to compare TCD and DCS derived autoregulation
parameters, and 29 yielded a second set of DCS-derived autoregulation parameters to assess test-retest reliability and (b) 30 adult
patients with acute ischemic stroke were potentially eligible based on completing protocols that included resting-state hemodynamic
monitoring with the necessary modalities. 17 yielded data to compare TCD and DCS derived autoregulation parameters, and 14
yielded a second set of DCS-derived autoregulation parameters to assess test-retest reliability.

Table 1. Healthy volunteer demographics and summary of
autoregulation metrics.

Healthy subjects

(n¼ 33)

Age, years 35 (11)

Sex, % female 48%

Race

White, % 73%

Black or African American, % 6%

Asian, % 21%

dCA Summary Statistics

DCS TCD

Normalized gain, %/% 1.32 (0.47) 0.97 (0.29)

Phase, � 24.0 (12.9) 31.3 (15.2)

Coherence 0.35 (0.14) 0.44 (0.14)

Continuous variables are reported as mean (standard deviation).

Categorical variables are reports as percentages. dCA indicated dynamic

cerebral autoregulation. DCS indicated diffuse correlation spectroscopy.

TCD indicates transcranial Doppler ultrasonography.
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In healthy adults, DCS and TCD derived gain are

strongly correlated (correlation coefficient 0.73;

p< 0.001). Figure 2(a) depicts the linear relationship

between the two modalities. A Bland-Altman analysis

(Figure 2(b)) indicates that the mean difference

between the DCS-gain and TCD-gain is 0.3, and all

but one measurement falls within the 95% confidence

interval for agreement. There was also strong agree-

ment between DCS derived gain during two resting-

state epochs (Figure 2(c); ICC 0.87, p< 0.001).

In contrast to gain, the DCS and TCD derived phase

are not in agreement in the healthy adults (Figure 3).

However, DCS-derived phase retains very good test-

retest reliability (Figure 3(c)) as demonstrated by an

ICC of 0.88 (p< 0.001).
In healthy volunteers, coherence was greater for

TCD than DCS in both the first and second resting

state epoch (p¼ 0.0002 and p¼ 0.0001, respectively;

Figure 4(a)). Coherence was stable over time, when

comparing the first and second resting-state
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Figure 2. TCD vs DCS measured gain in healthy adults and acute ischemic stroke patients: (a) A scatterplot depicts the TCD-
derived gain (x-axis) and DCS-derived gain (y-axis) in healthy volunteers. A linear model (maroon line) with 95% confidence intervals
(pink shaded region) is graphed over the scatterplot, along with a line of unity (blue dashed line). The correlation coefficient is 0.73
(p< 0.001), and the linear regression coefficient is 1.17 (þ/� 0.20). (b) A Bland-Altman plot indicates that TCD-derived gain is on
average 0.3 less than DCS-derived gain (dotted maroon line). The shaded light blue region represents the 95% confidence interval for
agreement. (c) Scatterplot depicts the test-retest reliability of DCS-derived gain for healthy volunteers, based on two different resting-
state epochs. A linear model (maroon line) with 95% confidence intervals (pink shaded region) is graphed over the scatterplot, along
with a line of unity (blue dashed line). The interclass correlation coefficient is 0.87 (p< 0.001), and the linear regression coefficient is
0.80 (þ/� 0.13). (d) Scatterplot depicts the TCD-derived gain (x-axis) and DCS-derived gain (y-axis) in acute stroke patients. A lineal
model (marron line) with 95% confidence intervals (pink shaded region) is graphed over the scatterplot, along with a line of unity (blue
dashed line). The correlation coefficient is 0.76 (p¼ 0.003), and the linear regression coefficient is 1.23 (þ/� 0.26). (e) Bland-Altman
plot indicates that DCS-derived gain is on average 0.42 greater than the TCD-derived gain (dotted maroon line). The shaded light blue
region represents the 95% confidence interval of agreement. (f) Scatterplot depicts the test-retest reliability of DCS-derived gain for
acute stroke patients, based on two different resting-state epochs. A linear model (maroon line) with 95% confidence intervals (pink
shaded region) is graphed over the scatterplot, along with the line of unity (blue dashed line). The interclass correlation coefficient is
0.82 (p¼ 0.001), and the linear regression coefficient is 1.21 (þ/� 0.30).
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measurement, by DCS (p¼ 0.85) and TCD (p¼ 0.94).

End-tidal CO2 was similar during the first and second

resting state epoch, 37.4 (3.0) vs 37.6 (3.4), p¼ 0.72

(Figure S1). End-tidal CO2 data were not interpretable

in four subjects, and a sensitivity analysis was performed

in which subjects without end-tidal CO2 data were

excluded, but the results were unaffected.

Acute ischemic stroke patients

30 acute ischemic stroke patients completed monitoring

protocols that included TCD, DCS, and BP monitoring

during resting-state. Figure 1(b) describes subject exclu-
sion from the final analysis on the basis of data quality
or TFA processing. After exclusion, the TCD and DCS
derived autoregulation parameters were compared in 17
stroke patients. Test-retest evaluation of DCS-derived
CA was performed in 14 of 17 patients. Demographics
and dCA summary statistics are reported in Table 2. All
strokes were in the MCA territory in one hemisphere,
and 47% of strokes affected the left hemisphere. The
average admission NIH stroke scale was 6.2 (þ/� 4.3).

In acute stroke patients, DCS and TCD derived gain
are strongly correlated (correlation coefficient 0.76;
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(a) (b) (c)

(f)(e)(d)

Figure 3. TCD vs DCS measured phase in healthy adults and acute ischemic stroke patients: (a) Scatterplot depicts the TCD-derived
phase (x-axis) and DCS-derived phase (y-axis) in healthy volunteers. Correlation is non-significant (p¼ 0.50). The linear model
(maroon line) with 95% confidence intervals (pink shaded region) is similarly non-significant. The blue dashed line represents the line
of unity. (b) Bland-Altman plot indicates that DCS-derived phase is on average 7.2 degrees less than the TCD-derived phase (dotted
maroon line). The 95% confidence interval for agreement is broad (shaded light blue region). (c) Scatterplot depicts the test-retest
reliability of DCS-derived phase in healthy volunteers, based on two different resting-state epochs. A linear model (maroon line) with
95% confidence intervals (pink shaded region) is graphed over the scatterplot, along with a line of unity (blue dashed line). The
interclass correlation coefficient is 0.88 (p< 0.001), and the linear regression coefficient is 0.80 (þ/� 0.12). (d) Scatterplot depicts the
TCD-derived phase (x-axis) and DCS-derived phase (y-axis) in acute stroke patients. The correlation coefficient is 0.65 (p¼ 0.006).
A linear model (maroon line) with 95% confidence intervals (pink shaded region) is graphed over the scatterplot, along with a line of
unity (blue dashed line). The linear regression coefficient is 0.40 (þ/� 0.12). (b) Bland-Altman plot indicates that DCS-derived phase is
on average 5.2 degrees larger than the TCD-derived value. The shaded blue region represents the 95% confidence interval of
agreement. (c) Scatterplot depicts the test-retest reliability of DCS-derived gain in acute stroke patients, based on two different
resting-state epochs. A linear model (maroon line) with 95% confidence intervals (pink shaded region) is graphed over the scatterplot,
along with a line of unity (blue dashed line). The interclass correlation coefficient is 0.90 (p< 0.001), and the linear regression
coefficient is 1.30 (þ/� 0.22).
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p¼ 0.003). Figure 2(d) depicts the linear relationship
between the two modalities, and a Bland-Altman anal-
ysis (Figure 2(e)) indicates that the mean difference
between the DCS-gain and TCD-gain is 0.42. As was
noted in healthy volunteers, the DCS-gain is larger, on
average. The 95% confidence interval for agreement
are broad relative to the mean gain value. In comparing
the first and second resting-state epoch, there is strong
agreement in DCS-derived gain (Figure 2(f)), as
reflected by an ICC of 0.82 (p¼ 0.001). A Bland-
Altman analysis shows that the mean difference
between the two gains is very small (0.02).

The correlation between DCS- and TCD-derived
phase in acute stroke subjects was significant (Figure
3(d); correlation coefficient 0.65, p¼ 0.006), though
not as strong as the gain values in these same stroke
subjects. Although the Bland-Altman plot (Figure 3(e))
indicates the average difference between the two phase
values is small (5.2 degrees), the intervals are extremely
broad relative to the mean phase values. Despite the
relatively weaker agreement (compared to gain) between
DCS and TCD-derived phase, the DCS-phase showed
excellent test-retest reliability (Figure 3(f)), with an ICC
of 0.90 (p< 0.001).

In stroke patients, TCD-based coherence was simi-
lar to DCS-based coherence during the first (p¼ 0.15)
and second resting state epoch (p¼ 0.86), Figure 4(b).
Coherence was stable over time, when comparing the
first and second resting-state measurement, by DCS
(p¼ 0.09) and TCD (p¼ 0.53). End-tidal CO2 was

similar during the first and second resting state

epoch, 38.0 (2.9) vs 37.8 (3.8), p¼ 0.80 (Figure S1).

Discussion

High-speed DCS is a promising non-invasive bedside

technique that can be leveraged to quantify dCA. Our

group previously validated DCS as a tool to assess

dCA during induced hypotension,4 but the present
investigation represents the first demonstration and

validation based on in resting-state data; the work lev-

erages a TFA based technique which can be performed

quickly and eliminates the need for inducing an ABP
shift, which can be uncomfortable for subjects and may

not be safe in all patient populations. DCS-derived

gain strongly correlates with TCD and retains excellent
test-retest reliability in both healthy volunteers and

stroke patients. DCS derived phase is moderately cor-

related with TCD in stroke patients, but no agreement

was observed in healthy volunteers. Still, DCS derived
phase retains excellent test-retest reliability in both

populations. The discrepancy between TCD and DCS

derived phase in healthy volunteers, requires further
investigation, but may reflect the temporal dissociation

between flow in a proximal arterial trunk, like the

proximal MCA, and tissue-level microvascular flow.

This work does not quantitatively compare dCA in
healthy volunteers and stroke patients, but rather

serves to validate the use of DCS in two physiologically

distinct cohorts.

Healthy Volunteers

Co
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e

DCS
Session #1

TCD
Session #1

Stroke Pa�ents

p = 0.0002

DCS
Session #2

TCD
Session #2

p = 0.0001

DCS
Session #1

TCD
Session #1

DCS
Session #2

TCD
Session #2
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he
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e

p = 0.15 p = 0.86

(a) (b)

Figure 4. TCD vs DCS measured coherence in healthy adults and acute ischemic stroke patients: (a) In healthy volunteers,
Coherence is higher for TCD than DCS during the first (p¼ 0.0002) and second (p¼ 0.0001) resting-state epoch. (b) In acute stroke
patients, coherence was similar with the two modalities during the first (p¼ 0.15) and second (p¼ 0.86) resting-state epoch. P-values
were calculated by Wilcoxon signed rank sum test. DCS indicates diffuse correlation spectroscopy. TCD indicated transcranial
Doppler.
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One challenge in attempting to validate DCS as a

tool for quantifying dCA is the absence of a true gold

standard technique for the continuous measurement of

tissue level CBF. TCD is commonly used and has the

advantage of being non-invasive, well tolerated, and

relatively inexpensive,14–17 and test-retest and left-

right reliability of TCD has been extensively

explored.17 However, TCD measures CBF-velocity in

proximal intracranial arteries; it does not directly mea-

sure tissue level perfusion.18 This is a major limitation

and could be a driver of differences in dCA measure-

ments between TCD and optical techniques. Another

optical technique, NIRS, has been used to assess dCA,

but it quantifies oxy and deoxy-hemoglobin concentration

rather than flow.21–23 Thus, to relate NIRS-measured

changes to CBF changes requires assumptions,24

including constant arterial oxygen saturation and cere-

bral oxygen metabolism, neither of which may be

appropriate in all clinical situations, including acute

stroke. In contrast to NIRS, DCS has the advantage

of directly probing CBF.27,35

Gain reflects how CA attenuates the amplitude of

ABP oscillations, and here we report a strong correla-

tion between DCS and TCD-derived gain in healthy

volunteers and stroke patients. The two modalities

measure different elements of the cerebrovascular

system, but this observation indicates that the sponta-

neous fluctuations in MCA trunk flow velocity and

microvascular CBF are similar. This finding is
expected, particularly if the MCA trunk has normal
caliber. However, it is possible that results would be
divergent in the setting of MCA stenosis or occlusion
(e.g. if the microvasculature received a larger than
usual contribution from collateral flow sources). In
such a situation, TCD may not adequately reflect
microvasculature flow, so a tool that directly probes
tissue flow, such as DCS, is particularly appealing for
the study of patients with cerebrovascular disease.

Phase reflects the time delay between changes in
ABP and CBF due to CA. DCS and TCD derived
phase moderately correlate in stroke patients, but not
in healthy volunteers. This discrepancy requires further
consideration and investigation but may reflect the fact
that DCS and TCD probe different components of the
cerebrovascular system. The bulk of vascular resistance
is encountered at the level of the arterioles, so proximal
(TCD) and distal (DCS) elements of the system may be
temporally dissociated. This is consistent with a
physiologically-based model of CA developed by
Payne and Trassenko, in which CBF-based phase
leads CBv-based phase in the frequency range reported
here.36 Baker et al. similarly reported temporal disso-
ciation of TCD and DCS waveforms when calculating
critical closing pressure and attributed the difference to
compliance of the cerebral microvasculature.37 In
stroke patients, where CA is largely thought to be
impaired, it is possible that the dissociation between
trunk and microvasculature is attenuated, thereby jus-
tifying the moderate correlation between DCS and
TCD-derived phase. To better compare the stroke
data with non-stroke data, future work should include
age-matched adults with vascular risk factors, to ensure
the discrepancy is not attributable to a variable other
than stroke. In healthy volunteers, if arteriolar resis-
tance is responsible for the phase dissociation, one
might therefore expect DCS derived phase to be
larger than TCD derived phase. In fact, Elting et al.
reported NIRS derived phase to be consistently larger
than TCD derived phase,38 but the relationship
between the two modalities in healthy volunteers was
only significantly after applying a transit time correc-
tion. It is also possible that subtle instability in the
DCS signal results in oscillations that confound the
phase analysis. Prior work from our group evaluated
cerebral autoregulation by inducing hypotension with
sudden thigh-cuff deflation. In that paradigm the rate
of regulation (ROR) quantifies how quickly the micro-
vasculature resistance adapts to a drop in BP. We
found a similar ROR with DCS and TCD,4 but ROR
is calculated over only a few seconds so is less sensitive
to subtle background signal instability. Future work
may clarify the validity of DCS-based phase by collect-
ing DCS, NIRS, and TCD data in parallel, or by

Table 2. Acute stroke patient demographics and summary of
autoregulation metrics.

Acute stroke patients (n¼ 17)

Age, years 63 (10)

Sex, % female 53%

Race

White, % 59%

Black or African American, % 35%

Asian, % 6%

Stroke characteristics

Vascular territory, %MCA 100%

Stroke laterality, % left 47%

Admission NIHSS 6.2 (4.3)

dCA Summary Statistics

DCS TCD

Normalized gain, %/% 1.32 (0.70) 0.90 (0.43)

Phase, � 39.4 (33.0) 44.6 (19.8)

Coherence 0.36 (0.14) 0.38 (0.17)

Continuous variables are reported as mean (standard deviation).

Categorical variables are reports as percentages. dCA indicated dynamic

cerebral autoregulation. DCS indicated diffuse correlation spectroscopy.

TCD indicates transcranial Doppler ultrasonography. MCA indicates

middle cerebral artery. NIHSS indicates National Institutes of Health

stroke scale.
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comparing a range of dCA techniques in the same
patient population.

In healthy volunteers, a difference in coherence was
observed between TCD and DCS. This is likely attrib-
utable to a difference in signal-to-noise ratios between
the two modalities (i.e. TCD can be expected to have a
higher SNR). A similar discrepancy was previously
reported when comparing TCD and NIRS.39 Stroke
patients may be less cooperative, and subjects move-
ment may disproportionately compromise the SNR for
TCD, justifying the similar coherence values in this
cohort. Alternatively, the stroke cohort is smaller and
therefore less sensitive to differences between the two
modalities. It is also conceivable that the reported
coherence differences are physiologically relevant. For
example, in healthy adults, proximal CBv may be more
linearly dependent on ABP, while the linear relation-
ship between microvascular CBF and ABP is attenuat-
ed by vasoregulation at the level of the arterioles. In
stroke patients, the two modalities demonstrate similar
coherence, which may indicate that arteriolar dysregu-
lation allows the two outputs to achieve a similar linear
dependence on ABP.

The study has several limitations. This study con-
tains two distinct cohorts: (1) young healthy volunteers
and (2) older ischemic stroke patients. Comparing the
groups is confounded by age and vascular risk factors,
so one cannot assume the differences are attributable of
stroke alone. To facilitate a quantitative inter-group
comparison, future work should include a cohort of
age-matched subjects with vascular risk factors.
Importantly, the aim of this study was not to compare
dCA between healthy volunteers and stroke patients,
but rather to validate the use of DCS in the study of
dCA, in which case diverse cohorts help to ensure in
both cohorts. The data were not collected within the
confines of a single protocol aimed at studying dCA,
but rather a post-hoc analysis of several studies evalu-
ating bedside interventions. Alternatively, this may
highlight a strength of the TFA based analysis which
can be performed on brief epochs from various proto-
cols. The test-retest evaluation is limited by the fact
that the second 5-minute epoch was extracted from
the final resting state data from the same monitoring
session (i.e., after a bedside intervention was per-
formed). Each intervention was followed by a 5-
minute wash-out before collecting the second resting
state epoch, thereby reducing the likelihood that the
intervention impacted the final resting state data. The
strong test-retest reliability reported here minimizes the
relevance of this potential limitation. The lack of a gold
standard in measuring dCA presents a challenge. TCD
is a commonly used and well accepted modality, but it
has limitations. In the stroke patients, data quality
issues eliminated a substantial proportion of patients

from the analysis. TFA requires high-quality data with-

out artifact or signal dropout. In stroke patients, neu-
rologic impairment or other medical complexities may

result in a lower level of cooperation and more frequent
movement artifacts than is ideal. More broadly, the

TFA methodology is limited by the assumption that
CA is a linear control system. The sampling frequency

of DCS is considerably lower than many other instru-
ments used in dCA research. Although high-speed DCS

represents a significant advance, 20Hz data acquisition
as reported here, is considerably lower than TCD and

NIRS. To facilitate a matched sample rate across all
instruments, the TCD and finometer were down-

sampled at 20Hz. This may fail to capture some very
high frequency vascular phenomena but is 100 fold the

upper limit of the low frequency band and should
therefore be adequate. In future work, linear interpo-

lation could be leverage to artificially increase the DCS
frequency and thereby avoid down-sampling other

instruments.
DCS is a promising non-invasive bedside technique

in studying cerebral hemodynamics. Here we demon-
strate the potential role of DCS in quantifying dCA

from brief epochs of resting state data. DCS is partic-
ularly reliable in assessing magnitude or amplitude

changes in CBF, quantified as gain. The temporal reg-

ulation of CBF, quantified as phase, should be inter-
preted with caution as further investigation is required

to confirm the validity of DCS derived phase and to
clarify the discrepancy between TCD and DCS derived

phase.
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