Mon, 12/5/2016 12-1pm Singh035
Jessamyn Fairfield, NUI Galway, Hosted by Marija Drndic
Imagine a world where materials can heal themselves and electronics are built to learn the way your brain does, all using wires tinier than a human hair.
My research lab at NUI Galway is focused on taking that world from science fiction to science fact!
We take materials that are very small, or nanoscale, in one dimension, spray them onto a variety of surfaces, and try to make circuitry from them.
Networks of nanowires are memristive, which means that their electronic behavior depends on their measurement history.
We use metal nanowires that can be sprayed onto a variety of surfaces to create random networks.
Light or electricity can change these networks of nanowires in useful ways.
Where two nanowires cross to form a junction, light or electricity can change the strength of the junction.
These individual changes change the overall behaviour of the network.
The changes are self-healing, so electrical currents can route around damaged sections of network.
The network also becomes ‘smarter’ controlled changes create new meaningful patterns of response to particular complex stimuli.
When they are built, traditional silicon architectures for computing have fixed structure and implicit fixed digital modes of computation.
Nanowire networks can create flexible computational modes that can adapt on the fly, which makes nanowire networks more like brains than like silicon chips.
*light lunch will be provided