Peer-reviewed articles
- C. Gerbelot, A. Karagulyan, S. Karp, K. Ravichandran, M. Stern, N. Srebro, “Applying statistical learning theory to deep learning“, J. Stat. Mech-Theory E. 10, 104003 (2024).
- L. E. Altman, M. Stern, A. J. Liu and D. J. Durian, “Experimental demonstration of coupled learning in elastic networks“, Phys. Rev. Applied 22, 012053 (2024).
- S. Dillavou, B. D. Beyer, M. Stern, M. Z. Miskin, A. J. Liu and D. J. Durian, “Machine learning without a processor: Emergent learning in a nonlinear analog network“, Proc. Natl. Acad. Sci. USA 121, 28 (2024).
- M. Stern, S. Dillavou, D. Jayaraman, D. J. Durian and A. J. Liu, “Training self-learning circuits for power-efficient solutions“, APL Mach. Learn. 2 016114 (2024).
- M. Stern, A. J. Liu and V. Balasubramanian, “Physical effects of learning“, Phys. Rev. E 109, 024311 (2024).
- Barat et. al., “Soft matter roadmap“, J. Phys. Materials 7, 012501 (2023).
- M. Stern, A. Murugan, “Learning without neurons in physical systems“, Annu. Rev. Condens. Matter Phys. 14, 417-441 (2023).
- C. Arinze, M. Stern, S. R. Nagel, A. Murugan, “Learning to self-fold at a bifurcation“, Phys. Rev. E 107, 025001 (2023).
- S. Dillavou, M. Stern, A. J. Liu and D. J. Durian, “Demonstration of decentralized, physics-driven learning“, Phys. Rev. Applied 18, 014040 (2022). -Editors’ Suggestion-
- M. Stern, S. Dillavou, M. Z. Miskin, D. J. Durian and A. J. Liu, “Physical learning beyond the quasistatic limit“, Phys. Rev. Research 4, L022037 (2022).
- J. F. Wycoff, S. Dillavou, M. Stern, A. J. Liu and D. J. Durian, “Desynchronous learning in a physics-driven learning network“, J. Chem. Phys. 156, 144903 (2022).
- M. Stern, D. Hexner, J. W. Rocks and A. J. Liu, “Supervised learning in physical networks: From machine learning to learning machines“, Phys. Rev. X 11, 021045 (2021).
- M. Stern, M.B. Pinson and A. Murugan, “Continual learning of multiple memories in mechanical networks“, Phys. Rev. X 10, 031044 (2020).
- M. Stern, C. Arinze, L. Perez, S. E. Palmer and A. Murugan, “Supervised learning through physical changes in a mechanical system“, Proc. Natl. Acad. Sci. USA 117, 26 (2020).
- M. Stern, V. Jayaram and A. Murugan, “Shaping the topology of folding pathways in mechanical systems“, Nat. Commun. 9, (1) 4303 (2018).
- M. Stern, M.B. Pinson and A. Murugan, “The complexity of folding self-folding origami“, Phys. Rev. X 7, 041070 (2017).
- M.B. Pinson*, M. Stern*, A.C. Ferrero, T. A. Witten, E. Chen and A. Murugan, “Self-folding origami at any energy scale“, Nat. Commun. 8, 15477 (2017).
- M. H. K. Schaarsberg, I. R. Peters, M. Stern, K. Dodge, W. W. Zhang and H. M. Jaeger, “From splashing to bouncing: The influence of viscosity on the impact of suspension droplets on a solid surface“, Phys. Rev. E 93, 062609 (2016).
Conference papers
- M. Stern, S. Dillavou, M. Z. Miskin, D. J. Durian and A. J. Liu, “Contrastive power-efficient physical learning in resistor networks“, Workshop on Machine Learning with New Compute Paradigms (NeurIPS 2023), New Orelans, Louisiana, Unites States.
- S. Dillavou, B. Beyer, M. Stern, M. Z. Miskin, A. J. Liu and D. J. Durian, “Nonlinear classification without a processor“, Workshop on Machine Learning with New Compute Paradigms (NeurIPS 2023), New Orelans, Louisiana, Unites States.
- S. Dillavou, B. Beyer, M. Stern, M. Z. Miskin, A. J. Liu and D. J. Durian, “Circuits that train themselves: decentralized, physics-driven learning“, AI and Optical Data Sciences IV (SPIE 2023), San Francisco, California, United States.
- M. Stern, S. Dillavou, M. Z. Miskin, D. J. Durian and A. J. Liu, “Out of equilibrium learning dynamics in physical allosteric resistor networks“, Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021), Vancouver, Canada.
- M. Stern, C. de Mulatier, P. Fleig and V. Balasubramanian, “Curious exploration in complex environments based on Hopfield networks“, Towards Curious Robots: Modern Approaches for Intrinsically Motivated Intelligent Behavior (ICRA 2021), Xi’an, China.
- M. Stern, D. Hexner, J. W. Rocks and A. J. Liu, “Flow networks as learning machines“, Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.
Preprints
- M. Stern, M. Guzman, F. Martins, A. J. Liu and V. Balasubramanian, “Physical networks become what they learn“, arXiv:2406.09689.
Patents
- S. Dillavou, D. J. Durian, A. J. Liu, M. Stern, M. Z. Miskin, “Coupled networks for physics-based machine learning“, US20220383205A1 (Dec. 2022).
Recorded talks
Learning without neurons in physical systems – Soft, Living, Active and Adaptive Matter Seminar , February 12th, 2024
From machine learning to learning machines – Science on the rocks (IAC and ScienceAbroad), July 18th, 2020
Ph.D. defense – November 4th, 2019
Media coverage
Controlling AI’s Growing Energy Needs – Communications of the ACM (November 2024)
Training neural networks using physical equations of motion – PNAS Commentary (July 2024)
A First, physical system learns nonlinear tasks without a traditional computer processor – Penn Today (July 2024)
How to Make the Universe Think for Us – Quanta Magazine (May 2022)
Simple electrical circuit learns on its own-with no help from a computer – Science (March 2022)
Programming Matter to do a Computer’s Job – APS News (May 2021)