Eleni Katifori

Irina Kneuper, William Teale, Jonathan Edward Dawson, Ryuji Tsugeki, Eleni Katifori, Klaus Palme, Franck Anicet Ditengou

Journal of Experimental Botany, Volume 72, Issue 4, 24 February 2021, Pages 1151–1165, https://doi.org/10.1093/jxb/eraa501
Our current understanding of vein development in leaves is based on canalization of the plant hormone auxin into self-reinforcing streams which determine the sites of vascular cell differentiation. By comparison, how auxin biosynthesis affects leaf vein patterning is less well understood. Here, after observing that inhibiting polar auxin transport rescues the sparse leaf vein phenotype in auxin biosynthesis mutants, we propose that the processes of auxin biosynthesis and cellular auxin efflux work in concert during vein development. By using computational modeling, we show that localized auxin maxima are able to interact with mechanical forces generated by the morphological constraints which are imposed during early primordium development. This interaction is able to explain four fundamental characteristics of midvein morphology in a growing leaf: (i) distal cell division; (ii) coordinated cell elongation; (iii) a midvein positioned in the center of the primordium; and (iv) a midvein which is distally branched. Domains of auxin biosynthetic enzyme expression are not positioned by auxin canalization, as they are observed before auxin efflux proteins polarize. This suggests that the site-specific accumulation of auxin, as regulated by the balanced action of cellular auxin efflux and local auxin biosynthesis, is crucial for leaf vein formation.