Three-step one-pot methodology for functionalization of sterically hindered polyacrylates

A new publication from the group in Polymer Chemistry addresses the functionalization of sterically hindered polyacrylates. Unlike poly(methyl acrylate) (PMA), the chain ends of which can be reacted quantitatively after polymerization, the chain ends of poly(butyl acrylate) (PBA) show lower reactivity due to steric encumbrance. In this work, a three step methodology involving biphasic SET-LRP, chain extension with methyl acrylate and heterogeneous esterification provides a route to acrylate-functionalized PBA. This approach, which can be simplified by applying two or even all three steps in a single pot, may provide a more general route to the funcationalization of sterically hindered polyacrylates.

This work was led in the group by Adrian Moreno with contributions from Tong Liu, as part of a collaboration with the group of Gerard Lligadas at University Rovira i Virgili, Tarragona, Spain.

Welcome to our newest group member, Xiaojing!

The group is pleased to welcome Xiaojing Feng to the group. Xiaojing is currently a PhD student at the University of Science and Technology in Beijing, China, and will be spending two years in our group as part of her doctoral studies. Her research interests include the chiral self-assembly of gold nanorods and gold nanoparticles, and functional wearable devices based on graphene-based soft electrodes.

Welcome to the group, Xiaojing!

SET-LRP Applied to Hydrophobic Biobased Menthyl Acrylate

Recent collaborative work from the group broadening the scope of SET-LRP has been published in Biomacromolecules. The new paper details the polymerization of menthyl acrylate, a monomer derived from biobased and renewable menthol. This monomer’s hydrophobicity, which might be expected to be problematic for SET-LRP, instead causes the reaction to self-generate a biphasic system, in which SET-LRP proceeds cleanly.

This work was led by the group of Gerard Lligadas at University Rovira i Virgili, Tarragona, Spain.

Recent Glycodendrimersomes Work Highlighted in PNAS Commentary

A recent paper from the group on the functional pairing between glycoconjugates and galectins has been highlighted in a Commentary in the Proceedings of the National Academy of Sciences (PNAS), written by Kamil Godula of UC San Diego. The original paper, also published in PNAS and led by Qi Xiao, unravels intricate aspects of the mechanism underlying the interactions between the cell glycan and proteins in its environment.

Feature image adapted from Kamil Godula’s Commentary.

SET-LRP’s High Chain End Functionality Exploited to Create Complex Architecture

Recent work published by the group in Polymer Chemistry utilizes one of the key features of single-electron transfer-living radical polymerization (SET-LRP): the high chain end functionality of the resulting polymers. In this work, led in our group by Adrian Moreno with contributions from Ryan L. Jezorek and Tong Liu, functional end groups of poly(methyl acrylate) (PMA) are exploited for esterification to generate PMA macromonomers and telechelics.

This work was conducted as part of a collaboration with the group of Gerard Lligadas at University Rovira i Virgili, Tarragona, Spain.